2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)最新文献

筛选
英文 中文
Motion detection, tracking and classification for automated Video Surveillance 用于自动视频监控的运动检测、跟踪和分类
Neha Gaba, Neelam Barak, Shipra Aggarwal
{"title":"Motion detection, tracking and classification for automated Video Surveillance","authors":"Neha Gaba, Neelam Barak, Shipra Aggarwal","doi":"10.1109/ICPEICES.2016.7853536","DOIUrl":"https://doi.org/10.1109/ICPEICES.2016.7853536","url":null,"abstract":"Moving object identification and tracking motion is the base source to extract vital information regarding moving objects from sequences in continuous image based surveillance systems. An advanced approach to motion detection for automatic video analysis has been presented in the paper. This achieves complete detection of moving object which is robust against of changes in brightness, dynamic variations in the surrounding environment and noise from the background. The proposed method is a pixel dependent and non-parametrized approach that is based on first frame to build the model. The detection of the foreground which represents the object and background which is the surrounding of the environment starts once the subsequent frame is captured. It utilizes unique tracking methodology that identifies and eliminates the ghost object from dissolving into the background of the frame. The proposed algorithm has been test implemented on several open source videos by imposing single set of variables to overcome shortcomings of relevant and recently developed techniques.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133241303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Sliding mode control based line-of-sight (LOS) stabilization of electro-optical sighting system 基于滑模控制的光电瞄准系统视距稳定
Shashi Singh, Rajeev Marathe, Avnish Kumar, Rajesh Kumar
{"title":"Sliding mode control based line-of-sight (LOS) stabilization of electro-optical sighting system","authors":"Shashi Singh, Rajeev Marathe, Avnish Kumar, Rajesh Kumar","doi":"10.1109/ICPEICES.2016.7853071","DOIUrl":"https://doi.org/10.1109/ICPEICES.2016.7853071","url":null,"abstract":"Electro-optical sighting systems are used for surveillance, target acquisition and tracking. The stabilization of the line of sight (LOS) against vehicle-induced disturbances is an essential feature of the electro-optical gimbaled sighting systems, mounted on mobile platforms. Due to factors like host platform dynamics, friction, cable restraint and noise, the pointing and tracking accuracy of the gimbaled system degrades substantially. This work presents control law design for LOS stabilization of a gimbaled electro-optical sighting system, using sliding mode controller (SMC). Other controllers like proportional-integral (PI) controller (conventional frequency domain approach) and linear quadratic gaussian with loop transfer recovery (LQG/LTR) controller (state-space based optimal control) are also compared with SMC for such application. SMC is a non-linear controller that is modified in this work which further reduces the chatter so as to achieve better steady state accuracy. All these controllers meet the stringent requirements of disturbance attenuation and command following.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133377632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Contingency analysis of power system by using voltage and active power performance index 基于电压和有功性能指标的电力系统应急分析
Satyanarayana Burada, D. Joshi, K. Mistry
{"title":"Contingency analysis of power system by using voltage and active power performance index","authors":"Satyanarayana Burada, D. Joshi, K. Mistry","doi":"10.1109/ICPEICES.2016.7853352","DOIUrl":"https://doi.org/10.1109/ICPEICES.2016.7853352","url":null,"abstract":"Now a days power system protection is an important task for an operating engineer, which can be done by doing online security assessment. Contingency analysis is one of the best methods to forecast the condition of power system if any unwanted event occured in the power system. To do contingency analysis first the operator has to know the parameters like voltage, power and voltage angle at each and every bus by doing load flow analysis on the system. Newton Raphson method is the best load flow method as it gives accurate results in less time. In this paper all line outage contingencies in a standard 6 bus and 5 bus power system has been done in MATLAB environment. For each line outage contingency, load flow analysis has been done on the system and the active power and voltage performance indices have been calculated. These two performance indices will give the idea about the change in active power flow through the lines and voltages at the buses for a particular line outage. Summation of these two indices will give the performance index value through which ranking of severity will be given to the lines. And from the load flow results comparison has been done between low rank and high rank line outage contingencies. This contingency analysis helps the operational engineer to know which line outage is dangerous to the system and what prior action is to be taken to minimize the effect of that particular line outage.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120948098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Wadoro: An autonomous mobile robot for surveillance Wadoro:用于监视的自主移动机器人
Shubham Mittal, J. K. Rai
{"title":"Wadoro: An autonomous mobile robot for surveillance","authors":"Shubham Mittal, J. K. Rai","doi":"10.1109/ICPEICES.2016.7853652","DOIUrl":"https://doi.org/10.1109/ICPEICES.2016.7853652","url":null,"abstract":"This paper presents Wadoro (WAtch DOg RObot); an autonomous mobile robot for household surveillance in open-spaces like roof at night; but only shaded areas such as verandah during daytime. The robot has the capability to detect humans in near real-time round-the-clock using passive infrared motion sensors and camera. The work cycle of the robot is divided into phases of human detection; tracking; recognition and alert-generation with simultaneous phase of self-protection. On detecting a human; it starts tracking to detect the face using Haar-like features based cascade classifier. Subsequent recognition is done using local binary pattern histograms approach to ascertain if the face matches with the face in database. In case of mismatch; an alert in the form of phone call to the mobile phone is generated. Self-protection ensures collision-free movements and prevent it from being stolen by generating an alert call on detecting its pick up from the ground. The experimental results demonstrate its successful operation.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114987565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Finding optimal deceleration with serial regenerative braking of electric vehicle using a multi-objective genetic algorithm 采用多目标遗传算法求解电动汽车串联再生制动的最优减速度
D. Chakraborty, A. Nandi
{"title":"Finding optimal deceleration with serial regenerative braking of electric vehicle using a multi-objective genetic algorithm","authors":"D. Chakraborty, A. Nandi","doi":"10.1109/ICPEICES.2016.7853333","DOIUrl":"https://doi.org/10.1109/ICPEICES.2016.7853333","url":null,"abstract":"To improve the fuel economy and range of an electric vehicle, as much as energy regeneration during braking is important. It was observed that driving harshness has a great impact on the regeneration efficiency during vehicle deceleration. On the other hand, to reduce the trip time as well as to avoid accident, the deceleration duration needs to be kept short. By realizing these conflicting objectives, in the present work an optimal deceleration is find out for a speed change using a genetic algorithm. The concerned multi-objective optimization problem (MOOP) was solved based on two approaches: considering a constant deceleration, and variable decelerations during braking. Comparative results of both the approaches are presented for a representative speed change in four driving cycles. Results of both approaches in solving the MOOP including under certain constraints, such as a desired comfort journey and maintaining a safe braking distance, suggest that multiple decelerations should be used during planned braking, where as either a constant or multiple deceleration may be taken during braking for high comfort journey and under emergency braking demand.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":"924 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116420277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Modeling and control of a battery connected standalone photovoltaic system 电池连接独立光伏系统的建模与控制
Priyabrata Shaw, P. Sahu, S. Maity, Punit Kumar
{"title":"Modeling and control of a battery connected standalone photovoltaic system","authors":"Priyabrata Shaw, P. Sahu, S. Maity, Punit Kumar","doi":"10.1109/ICPEICES.2016.7853123","DOIUrl":"https://doi.org/10.1109/ICPEICES.2016.7853123","url":null,"abstract":"This paper presents modeling and control of a standalone photovoltaic (PV) system in which a battery is used as a backup source for power management between the source and the load. Lead-acid battery is commonly used in high power PV applications due to its low cost and availability in large size. The modeling of PV system and lead-acid battery by using the corresponding equivalent circuits are discussed here. Three independent control loops are proposed to control the standalone PV system; MPPT control loop for extracting maximum power from PV module under different solar irradiation, battery control loop for bidirectional power flow between battery and dc-link through buck-boost converter to keep the input dc voltage constant, and inverter control loop for maintaining good voltage regulation and achieving fast dynamic response under sudden load fluctuations. The stability of the above control loops are verified by using Bode diagram. Finally the proposed method is applied to 2 kW, 110 V, 50 Hz, two-stage single-phase standalone PV system. The simulation and the experimental results are presented to validate the theoretical analysis, effectiveness and feasibility of the proposed control strategy.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":"440 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124730342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Power system oscillation damping by intelligent power system stabilizer 智能电力系统稳定器对电力系统振荡的抑制
Sragdhara Bhattacharya
{"title":"Power system oscillation damping by intelligent power system stabilizer","authors":"Sragdhara Bhattacharya","doi":"10.1109/ICPEICES.2016.7853509","DOIUrl":"https://doi.org/10.1109/ICPEICES.2016.7853509","url":null,"abstract":"Power Systems are inherently non-linear systems that are frequently subjected to various disturbances causing oscillations at low frequencies that may lead to instability. Generators are usually provided with power system stabilizers minimize the effect of these oscillations. The objective of this paper is find the optimal parameters for a conventional “lead-lag compensator based Power System Stabilizer (PSS)” for a system comprising of a “generator connected to an infinite bus” and containing a ST1A type excitation system. The tuning of the parameters of the “Power System Stabilizer” is accomplished using the “Particle Swarm Optimization (PSO)” algorithm. In this paper, a Fuzzy Power System Stabilizer (FPSS) where the optimal values of the parameters of the FPSS are decided using the PSO algorithm is also designed. The Particle Swarm Optimization based conventional PSS and the “Particle Swarm Optimization based Fuzzy PSS” are also incorporated in a system containing multiple machines to check the system responses under different loading conditions and faults of different types. The simulation results clearly prove the efficiency of the PSO based conventional and fuzzy power system stabilizers in damping the low frequency speed and power oscillations occurring in the power system due to various disturbances.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125339072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Performance evaluation of K-means clustering algorithm with various distance metrics 不同距离度量下k -均值聚类算法的性能评价
Shruti Kapil, Meenu Chawla
{"title":"Performance evaluation of K-means clustering algorithm with various distance metrics","authors":"Shruti Kapil, Meenu Chawla","doi":"10.1109/ICPEICES.2016.7853264","DOIUrl":"https://doi.org/10.1109/ICPEICES.2016.7853264","url":null,"abstract":"Data Mining is the technique used to visualize and scrutinize the data and drive some useful information from that data so that information can be used to perform any useful work. So clustering is the one of the technique that has been proposed to be used in the area of data mining The notion behind clustering is to assigning objects to cluster based upon some customary characteristics such that object belonging to one cluster are similar other than those belonging to other clusters. There are numerous clustering algorithms available but K-means clustering is widely used to form clusters of colossal dataset. The footprint factor for k-means clustering is its scalability, efficiency, simplicity. This proposed paper aims to study the k-means clustering and various distance function used in k-means clustering such as Euclidean distance function and Manhattan distance function. Experiment and results are shown to observe the effect of these distance function upon k-means clustering. The distance functions are compared using number of iterations, within sum squared errors and time taken to build the full model.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":"44 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120844462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Design and implementation of advanced auto calibrating line following sensor for coloured surfaces with a white line 设计和实现先进的自动校准线跟踪传感器的有色表面与白线
Samruddhi Patil, Ameya Wagh, Mitali Sawant, Saurav Panda, A. Bhopale
{"title":"Design and implementation of advanced auto calibrating line following sensor for coloured surfaces with a white line","authors":"Samruddhi Patil, Ameya Wagh, Mitali Sawant, Saurav Panda, A. Bhopale","doi":"10.1109/ICPEICES.2016.7853535","DOIUrl":"https://doi.org/10.1109/ICPEICES.2016.7853535","url":null,"abstract":"This paper discusses the design and implementation of a 7 channel line sensor for line following robot having advanced functionalities such as software based automatic sensor calibration and individual threshold per sensor channel. Unlike traditional line sensors which work on black surfaces with a white line or vice versa, this sensor is designed to differentiate white line on any coloured surface. Thus this sensor can be implemented in robotics applications or in industries where different section's floors are assigned with different colours and robot navigates using line following. The system was implemented using light emitting diodes, phototransistor and an onboard microcontroller Arduino Mega 2560 which communicates with any navigation control system using serial communication. Moving average filters are implemented per channel to remove the fluctuations in the readings due to vibration of the sensor during locomotion. It then gives the error feedback or the offset of the white line from the centre, to the system that is corrected using Proportional-Integral-Derivative algorithm. It also takes care of non scaled readings of the line sensors due to ambient light by having separate threshold values for individual sensors making each sensor independent. The main aim of this paper is to highlight the use and need of a line following sensor capable of differentiating any background colours with white line and at different light conditions. Performance metrics were measured and compared to show tradeoffs between cost and performance.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129556273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Inverse Optimal and Theta-D Control based near Optimal flight controller 基于近最优飞行控制器的逆最优和Theta-D控制
P. P, M. Nandakumar
{"title":"Inverse Optimal and Theta-D Control based near Optimal flight controller","authors":"P. P, M. Nandakumar","doi":"10.1109/ICPEICES.2016.7853150","DOIUrl":"https://doi.org/10.1109/ICPEICES.2016.7853150","url":null,"abstract":"The objective of this paper is to present a nonlinear flight control strategy, recommendable for the entire flight regime. Traditional controllers exhibit innate performance deficiencies in the widely varying aerodynamic scenario with substantially elevated control efforts. Therefore nonlinear optimality based control would be vital for the overall system performance. The prime feature of Inverse Optimal Control is that it guarantees asymptotic stability and optimality, globally, with respect to a performance index determined posteriori. The basis of Inverse Optimal control (IOC) rests on the formulation of an appropriate Control Lyapunov Function (CLF), the determination of which is in fact laborious in most cases. However here, the determination of CLF, for a particular class of nonlinear systems, is systematized to some extent. The 6 DOF aircraft dynamics separated into two timescales is considered for simulation study. The slow angular dynamics of the outer loop is controlled via Inverse Optimal Control. A suboptimal Theta-D controller is employed for the control of the fast inner loop. Thus in effect a near optimal control performance is expected of the resultant nonlinear control system. The inherent stability and robustness characteristic of the participating control laws will contribute the same to the overall system. Simulation results verify all the anticipated capabilities in terms of performance, optimality, stability and robustness.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124928712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信