ACS Engineering AuPub Date : 2024-09-19DOI: 10.1021/acsengineeringau.4c0002310.1021/acsengineeringau.4c00023
Debdeep Bhattacharjee, Suman Chakraborty* and Arnab Atta*,
{"title":"Magnetowetting Dynamics of Compound Droplets","authors":"Debdeep Bhattacharjee, Suman Chakraborty* and Arnab Atta*, ","doi":"10.1021/acsengineeringau.4c0002310.1021/acsengineeringau.4c00023","DOIUrl":"https://doi.org/10.1021/acsengineeringau.4c00023https://doi.org/10.1021/acsengineeringau.4c00023","url":null,"abstract":"<p >Understanding the spreading dynamics of compound droplets is crucial for emerging applications like micromixers, microreactors, and mechano-responsive artificial cells. Integrating magnetic fields expands the potential of these technologies in soft robotics and medical imaging. Despite extensive research on individual droplets, the magnetowetting processes of compound droplets on hydrophobic surfaces remain underexplored. To address this gap, we use a finite element framework to conduct numerical simulations, focusing on the spreading behavior of compound droplets on hydrophobic surfaces under magnetic fields. Our approach is validated against experimental and theoretical paradigms from existing single-droplet studies. Additionally, we verify our model for the temporal evolution of compound droplet wetting in the absence of magnetic fields against existing numerical results. This research systematically explores wetting behaviors and shell fluid disintegration by manipulating key parameters, including magnetic field intensity and inner-to-outer droplet size ratios. These findings have significant implications for enhancing magnetically controlled soft fluidic systems, particularly in digital microfluidics and drug development.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"4 6","pages":"524–532 524–532"},"PeriodicalIF":4.3,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Engineering AuPub Date : 2024-09-17DOI: 10.1021/acsengineeringau.4c00025
Balachandran Subramanian, K. Jeeva Jothi, Mohamedazeem M. Mohideen, R. Karthikeyan, A. Santhana Krishna Kumar, Ganeshraja Ayyakannu Sundaram, K. Thirumalai, Munirah D. Albaqami, Saikh Mohammad, M. Swaminathan
{"title":"Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications","authors":"Balachandran Subramanian, K. Jeeva Jothi, Mohamedazeem M. Mohideen, R. Karthikeyan, A. Santhana Krishna Kumar, Ganeshraja Ayyakannu Sundaram, K. Thirumalai, Munirah D. Albaqami, Saikh Mohammad, M. Swaminathan","doi":"10.1021/acsengineeringau.4c00025","DOIUrl":"https://doi.org/10.1021/acsengineeringau.4c00025","url":null,"abstract":"Industrial wastewater pollution is a crucial global issue due to the increasing need for clean water. Traditional photocatalytic methods for eliminating harmful dyes are often ineffective and are environmentally damaging. This study introduces a new, efficient photocatalyst combining Dy<sub>2</sub>O<sub>3</sub> with TiO<sub>2</sub> using a single-step hydrothermal approach. Dy<sub>2</sub>O<sub>3</sub>@TiO<sub>2</sub> nanostructures were synthesized and characterized by using XRD, SEM, EDS, TEM, BET, and UV–visible spectroscopy. Dy<sub>2</sub>O<sub>3</sub> was evenly distributed on TiO<sub>2</sub>, preventing clumping and resulting in a larger surface area with more active sites. UV irradiation (365 nm) replaced the traditional thermal energy for photocatalytic dye breakdown, leveraging the varying conductivity of the Dy<sub>2</sub>O<sub>3</sub>@TiO<sub>2</sub> nanocomposites. Incorporating Dy<sub>2</sub>O<sub>3</sub> decreased band gaps, enhancing redox reactions and expanding the range of degradable contaminants. For Rhodamine B dye degradation, the Dy<sub>2</sub>O<sub>3</sub>@TiO<sub>2</sub> composite demonstrated significantly higher degradation rates than Dy<sub>2</sub>O<sub>3</sub> or TiO<sub>2</sub> alone at reaction parameters such as neutral pH (pH 7) and catalyst concentration (2 g L<sup>–1</sup>). The hybrid material also demonstrated improved electrocatalytic activity in oxygen reduction reactions (ORRs) under alkaline conditions with an initial potential of 0.88 V and a Tafel slope of 73 mV dec<sup>–1</sup>. The enhanced catalytic activity and durability are attributed to the synergistic interaction between Dy<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>. This novel photocatalyst offers a sustainable alternative for treating industrial effluents while reducing the environmental impact.","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vitor Gama, Beatriz Dantas, Oishi Sanyal* and Fernando V. Lima*,
{"title":"","authors":"Vitor Gama, Beatriz Dantas, Oishi Sanyal* and Fernando V. Lima*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"4 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":4.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsengineeringau.3c00069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144385423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"","authors":"Patrick J. McCauley, and , Alexandra V. Bayles*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"4 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":4.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsengineeringau.4c00001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144385441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joonsoo Han*, Joachim D. Bjerregaard, Henrik Grönbeck, Derek Creaser and Louise Olsson*,
{"title":"","authors":"Joonsoo Han*, Joachim D. Bjerregaard, Henrik Grönbeck, Derek Creaser and Louise Olsson*, ","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"4 4","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":4.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsengineeringau.4c00004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144385429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Engineering AuPub Date : 2024-07-25DOI: 10.1021/acsengineeringau.4c00009
Jonathan P. P. Noble, Simon J. Bending, Alfred K. Hill
{"title":"Radiofrequency Induction Heating for Green Chemicals Manufacture: A Systematic Model of Energy Losses and a Scale-Up Case-Study","authors":"Jonathan P. P. Noble, Simon J. Bending, Alfred K. Hill","doi":"10.1021/acsengineeringau.4c00009","DOIUrl":"https://doi.org/10.1021/acsengineeringau.4c00009","url":null,"abstract":"Radiofrequency (RF) induction heating has generated much interest for the abatement of carbon emissions from the chemicals sector as a direct electrification technology. Three challenges have held back its deployment at scale: reactors must be built from nonconductive materials which eliminates steel as a design choice; the viability of scale-up is uncertain; and to date the reported energy efficiency has been too low. This paper presents a model that for the first time makes a comprehensive analysis of energy losses that arise from RF induction heating. The maximum energy efficiency for radio frequency induction heating was previously reported to be 23% with a typical frequency range of 200–400 kHz. The results from the model show that an energy efficiency of 65–82% is achieved at a much lower frequency of 10 kHz and a reactor diameter of 0.2 m. Energy efficiency above 90% with reactor diameters above 1 m in diameter are predicted if higher voltage radio frequency sources can be developed. A new location of the work coil inside of the reactor wall is shown to be highly effective. Losses arising from heating a steel reactor wall in this configuration are shown to be insignificant, even when the wall is immediately adjacent to the work coil. This analysis demonstrates that RF induction heating can be a highly efficient and effective industrial technology for coupling high energy demand chemicals manufacture electricity from zero carbon renewables.","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}