{"title":"Magnetowetting Dynamics of Compound Droplets","authors":"Debdeep Bhattacharjee, Suman Chakraborty, Arnab Atta","doi":"10.1021/acsengineeringau.4c00023","DOIUrl":"https://doi.org/10.1021/acsengineeringau.4c00023","url":null,"abstract":"Understanding the spreading dynamics of compound droplets is crucial for emerging applications like micromixers, microreactors, and mechano-responsive artificial cells. Integrating magnetic fields expands the potential of these technologies in soft robotics and medical imaging. Despite extensive research on individual droplets, the magnetowetting processes of compound droplets on hydrophobic surfaces remain underexplored. To address this gap, we use a finite element framework to conduct numerical simulations, focusing on the spreading behavior of compound droplets on hydrophobic surfaces under magnetic fields. Our approach is validated against experimental and theoretical paradigms from existing single-droplet studies. Additionally, we verify our model for the temporal evolution of compound droplet wetting in the absence of magnetic fields against existing numerical results. This research systematically explores wetting behaviors and shell fluid disintegration by manipulating key parameters, including magnetic field intensity and inner-to-outer droplet size ratios. These findings have significant implications for enhancing magnetically controlled soft fluidic systems, particularly in digital microfluidics and drug development.","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"130 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Engineering AuPub Date : 2024-09-17DOI: 10.1021/acsengineeringau.4c00025
Balachandran Subramanian, K. Jeeva Jothi, Mohamedazeem M. Mohideen, R. Karthikeyan, A. Santhana Krishna Kumar, Ganeshraja Ayyakannu Sundaram, K. Thirumalai, Munirah D. Albaqami, Saikh Mohammad, M. Swaminathan
{"title":"Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications","authors":"Balachandran Subramanian, K. Jeeva Jothi, Mohamedazeem M. Mohideen, R. Karthikeyan, A. Santhana Krishna Kumar, Ganeshraja Ayyakannu Sundaram, K. Thirumalai, Munirah D. Albaqami, Saikh Mohammad, M. Swaminathan","doi":"10.1021/acsengineeringau.4c00025","DOIUrl":"https://doi.org/10.1021/acsengineeringau.4c00025","url":null,"abstract":"Industrial wastewater pollution is a crucial global issue due to the increasing need for clean water. Traditional photocatalytic methods for eliminating harmful dyes are often ineffective and are environmentally damaging. This study introduces a new, efficient photocatalyst combining Dy<sub>2</sub>O<sub>3</sub> with TiO<sub>2</sub> using a single-step hydrothermal approach. Dy<sub>2</sub>O<sub>3</sub>@TiO<sub>2</sub> nanostructures were synthesized and characterized by using XRD, SEM, EDS, TEM, BET, and UV–visible spectroscopy. Dy<sub>2</sub>O<sub>3</sub> was evenly distributed on TiO<sub>2</sub>, preventing clumping and resulting in a larger surface area with more active sites. UV irradiation (365 nm) replaced the traditional thermal energy for photocatalytic dye breakdown, leveraging the varying conductivity of the Dy<sub>2</sub>O<sub>3</sub>@TiO<sub>2</sub> nanocomposites. Incorporating Dy<sub>2</sub>O<sub>3</sub> decreased band gaps, enhancing redox reactions and expanding the range of degradable contaminants. For Rhodamine B dye degradation, the Dy<sub>2</sub>O<sub>3</sub>@TiO<sub>2</sub> composite demonstrated significantly higher degradation rates than Dy<sub>2</sub>O<sub>3</sub> or TiO<sub>2</sub> alone at reaction parameters such as neutral pH (pH 7) and catalyst concentration (2 g L<sup>–1</sup>). The hybrid material also demonstrated improved electrocatalytic activity in oxygen reduction reactions (ORRs) under alkaline conditions with an initial potential of 0.88 V and a Tafel slope of 73 mV dec<sup>–1</sup>. The enhanced catalytic activity and durability are attributed to the synergistic interaction between Dy<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>. This novel photocatalyst offers a sustainable alternative for treating industrial effluents while reducing the environmental impact.","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142264629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Engineering AuPub Date : 2024-07-25DOI: 10.1021/acsengineeringau.4c00009
Jonathan P. P. Noble, Simon J. Bending, Alfred K. Hill
{"title":"Radiofrequency Induction Heating for Green Chemicals Manufacture: A Systematic Model of Energy Losses and a Scale-Up Case-Study","authors":"Jonathan P. P. Noble, Simon J. Bending, Alfred K. Hill","doi":"10.1021/acsengineeringau.4c00009","DOIUrl":"https://doi.org/10.1021/acsengineeringau.4c00009","url":null,"abstract":"Radiofrequency (RF) induction heating has generated much interest for the abatement of carbon emissions from the chemicals sector as a direct electrification technology. Three challenges have held back its deployment at scale: reactors must be built from nonconductive materials which eliminates steel as a design choice; the viability of scale-up is uncertain; and to date the reported energy efficiency has been too low. This paper presents a model that for the first time makes a comprehensive analysis of energy losses that arise from RF induction heating. The maximum energy efficiency for radio frequency induction heating was previously reported to be 23% with a typical frequency range of 200–400 kHz. The results from the model show that an energy efficiency of 65–82% is achieved at a much lower frequency of 10 kHz and a reactor diameter of 0.2 m. Energy efficiency above 90% with reactor diameters above 1 m in diameter are predicted if higher voltage radio frequency sources can be developed. A new location of the work coil inside of the reactor wall is shown to be highly effective. Losses arising from heating a steel reactor wall in this configuration are shown to be insignificant, even when the wall is immediately adjacent to the work coil. This analysis demonstrates that RF induction heating can be a highly efficient and effective industrial technology for coupling high energy demand chemicals manufacture electricity from zero carbon renewables.","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Engineering AuPub Date : 2024-05-31DOI: 10.1021/acsengineeringau.4c0000410.1021/acsengineeringau.4c00004
Joonsoo Han*, Joachim D. Bjerregaard, Henrik Grönbeck, Derek Creaser and Louise Olsson*,
{"title":"Effect of SO2 and SO3 Exposure to Cu-CHA on Surface Nitrate and N2O Formation for NH3–SCR","authors":"Joonsoo Han*, Joachim D. Bjerregaard, Henrik Grönbeck, Derek Creaser and Louise Olsson*, ","doi":"10.1021/acsengineeringau.4c0000410.1021/acsengineeringau.4c00004","DOIUrl":"https://doi.org/10.1021/acsengineeringau.4c00004https://doi.org/10.1021/acsengineeringau.4c00004","url":null,"abstract":"<p >We report effects of SO<sub>2</sub> and SO<sub>3</sub> exposure on ammonium nitrate (AN) and N<sub>2</sub>O formation in Cu-CHA used for NH<sub>3</sub>–SCR. First-principles calculations and several characterizations (ICP, BET, XRD, UV–vis–DRS) were applied to characterize the Cu-CHA material and speciation of sulfur species. The first-principles calculations demonstrate that the SO<sub>2</sub> exposure results in both (bi)sulfite and (bi)sulfate whereas the SO<sub>3</sub> exposure yields only (bi)sulfate. Furthermore, SOx adsorption on framework-bound dicopper species is shown to be favored with respect to adsorption onto framework-bound monocopper species. Temperature-programmed reduction with H<sub>2</sub> shows two clear reduction states and larger sulfur uptake for the SO<sub>3</sub>-exposed Cu-CHA compared to the SO<sub>2</sub>-exposed counterpart. Temperature-programmed desorption of formed ammonium nitrate (AN) highlights a significant decrease in nitrate storage due to sulfur species interacting with copper sites in the form of ammonium/copper (bi)bisulfite/sulfate. Especially, highly stable sulfur species from SO<sub>3</sub> exposure influence the NO<sub>2</sub>–SCR chemistry by decreasing the N<sub>2</sub>O selectivity during NH<sub>3</sub>–SCR whereas an increased N<sub>2</sub>O selectivity was observed for the SO<sub>2</sub>-exposed Cu-CHA sample. This study provides fundamental insights into how SO<sub>2</sub> and SO<sub>3</sub> affect the N<sub>2</sub>O formation during ammonium nitrate decomposition in NH<sub>3</sub>–SCR applications, which is a very important topic for practical applications.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"4 4","pages":"405–421 405–421"},"PeriodicalIF":4.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Engineering AuPub Date : 2024-05-31DOI: 10.1021/acsengineeringau.4c00004
Joonsoo Han, Joachim D. Bjerregaard, Henrik Grönbeck, Derek Creaser, Louise Olsson
{"title":"Effect of SO2 and SO3 Exposure to Cu-CHA on Surface Nitrate and N2O Formation for NH3–SCR","authors":"Joonsoo Han, Joachim D. Bjerregaard, Henrik Grönbeck, Derek Creaser, Louise Olsson","doi":"10.1021/acsengineeringau.4c00004","DOIUrl":"https://doi.org/10.1021/acsengineeringau.4c00004","url":null,"abstract":"We report effects of SO<sub>2</sub> and SO<sub>3</sub> exposure on ammonium nitrate (AN) and N<sub>2</sub>O formation in Cu-CHA used for NH<sub>3</sub>–SCR. First-principles calculations and several characterizations (ICP, BET, XRD, UV–vis–DRS) were applied to characterize the Cu-CHA material and speciation of sulfur species. The first-principles calculations demonstrate that the SO<sub>2</sub> exposure results in both (bi)sulfite and (bi)sulfate whereas the SO<sub>3</sub> exposure yields only (bi)sulfate. Furthermore, SOx adsorption on framework-bound dicopper species is shown to be favored with respect to adsorption onto framework-bound monocopper species. Temperature-programmed reduction with H<sub>2</sub> shows two clear reduction states and larger sulfur uptake for the SO<sub>3</sub>-exposed Cu-CHA compared to the SO<sub>2</sub>-exposed counterpart. Temperature-programmed desorption of formed ammonium nitrate (AN) highlights a significant decrease in nitrate storage due to sulfur species interacting with copper sites in the form of ammonium/copper (bi)bisulfite/sulfate. Especially, highly stable sulfur species from SO<sub>3</sub> exposure influence the NO<sub>2</sub>–SCR chemistry by decreasing the N<sub>2</sub>O selectivity during NH<sub>3</sub>–SCR whereas an increased N<sub>2</sub>O selectivity was observed for the SO<sub>2</sub>-exposed Cu-CHA sample. This study provides fundamental insights into how SO<sub>2</sub> and SO<sub>3</sub> affect the N<sub>2</sub>O formation during ammonium nitrate decomposition in NH<sub>3</sub>–SCR applications, which is a very important topic for practical applications.","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical Aspect of Ocean Liming for CO2 Removal: Dissolution Kinetics of Calcium Hydroxide in Seawater","authors":"Selene Varliero, Annamaria Buono, Stefano Caserini, Guido Raos* and Piero Macchi*, ","doi":"10.1021/acsengineeringau.4c0000810.1021/acsengineeringau.4c00008","DOIUrl":"https://doi.org/10.1021/acsengineeringau.4c00008https://doi.org/10.1021/acsengineeringau.4c00008","url":null,"abstract":"<p >Ocean liming is attracting ever-increasing attention as one of the most suitable and convenient ways of removing carbon dioxide from the atmosphere and combating global warming and the acidification of the oceans at the same time. However, the short-term consequences of Ca(OH)<sub>2</sub> [slaked lime] dissolution in seawater have been scarcely studied. In this work, we investigate in detail what happens in the initial stages after the dissolution of slaked lime, analyzing the kinetics of the process and the effects on the physicochemical parameters of seawater. A series of experiments, carried out by varying the seawater conditions (like temperature and salinity) or the liming conditions (like the dispersion in the form of slurry or powder and the concentration) allow us to draw conclusions on the ideal conditions for a more efficient and environmentally friendly liming process.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"4 4","pages":"422–431 422–431"},"PeriodicalIF":4.3,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Engineering AuPub Date : 2024-05-13DOI: 10.1021/acsengineeringau.4c00001
Patrick J. McCauley, Alexandra V. Bayles
{"title":"Nozzle Innovations That Improve Capacity and Capabilities of Multimaterial Additive Manufacturing","authors":"Patrick J. McCauley, Alexandra V. Bayles","doi":"10.1021/acsengineeringau.4c00001","DOIUrl":"https://doi.org/10.1021/acsengineeringau.4c00001","url":null,"abstract":"Multimaterial additive manufacturing incorporates multiple species within a single 3D-printed object to enhance its material properties and functionality. This technology could play a key role in distributed manufacturing. However, conventional layer-by-layer construction methods must operate at low volumetric throughputs to maintain fine feature resolution. One approach to overcome this challenge and increase production capacity is to structure multimaterial components in the printhead prior to deposition. Here we survey four classes of multimaterial nozzle innovations, nozzle arrays, coextruders, static mixers, and advective assemblers, designed for this purpose. Additionally, each design offers unique capabilities that provide benefits associated with accessible architectures, interfacial adhesion, material properties, and even living-cell viability. Accessing these benefits requires trade-offs, which may be mitigated with future investigation. Leveraging decades of research and development of multiphase extrusion equipment can help us engineer the next generation of 3D-printing nozzles and expand the capabilities and practical reach of multimaterial additive manufacturing.","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140928151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Engineering AuPub Date : 2024-05-13DOI: 10.1021/acsengineeringau.4c0000110.1021/acsengineeringau.4c00001
Patrick J. McCauley, and , Alexandra V. Bayles*,
{"title":"Nozzle Innovations That Improve Capacity and Capabilities of Multimaterial Additive Manufacturing","authors":"Patrick J. McCauley, and , Alexandra V. Bayles*, ","doi":"10.1021/acsengineeringau.4c0000110.1021/acsengineeringau.4c00001","DOIUrl":"https://doi.org/10.1021/acsengineeringau.4c00001https://doi.org/10.1021/acsengineeringau.4c00001","url":null,"abstract":"<p >Multimaterial additive manufacturing incorporates multiple species within a single 3D-printed object to enhance its material properties and functionality. This technology could play a key role in distributed manufacturing. However, conventional layer-by-layer construction methods must operate at low volumetric throughputs to maintain fine feature resolution. One approach to overcome this challenge and increase production capacity is to structure multimaterial components in the printhead prior to deposition. Here we survey four classes of multimaterial nozzle innovations, nozzle arrays, coextruders, static mixers, and advective assemblers, designed for this purpose. Additionally, each design offers unique capabilities that provide benefits associated with accessible architectures, interfacial adhesion, material properties, and even living-cell viability. Accessing these benefits requires trade-offs, which may be mitigated with future investigation. Leveraging decades of research and development of multiphase extrusion equipment can help us engineer the next generation of 3D-printing nozzles and expand the capabilities and practical reach of multimaterial additive manufacturing.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"4 4","pages":"368–380 368–380"},"PeriodicalIF":4.3,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Engineering AuPub Date : 2024-04-17DOI: 10.1021/acsengineeringau.4c00014
Steven G. Arturo*, Linda J. Broadbelt*, Paul J. Dauenhauer* and Ananth Govind Rajan*,
{"title":"Materials Design: The Next Paradigm in Chemistry and Engineering","authors":"Steven G. Arturo*, Linda J. Broadbelt*, Paul J. Dauenhauer* and Ananth Govind Rajan*, ","doi":"10.1021/acsengineeringau.4c00014","DOIUrl":"10.1021/acsengineeringau.4c00014","url":null,"abstract":"","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"4 3","pages":"293–294"},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Engineering AuPub Date : 2024-04-15DOI: 10.1021/acsengineeringau.3c00068
Nathan Villavicencio, Michael N. Groves
{"title":"Tuning Reinforcement Learning Parameters for Cluster Selection to Enhance Evolutionary Algorithms","authors":"Nathan Villavicencio, Michael N. Groves","doi":"10.1021/acsengineeringau.3c00068","DOIUrl":"https://doi.org/10.1021/acsengineeringau.3c00068","url":null,"abstract":"The ability to find optimal molecular structures with desired properties is a popular challenge, with applications in areas such as drug discovery. Genetic algorithms are a common approach to global minima molecular searches due to their ability to search large regions of the energy landscape and decrease computational time via parallelization. In order to decrease the amount of unstable intermediate structures being produced and increase the overall efficiency of an evolutionary algorithm, clustering was introduced in multiple instances. However, there is little literature detailing the effects of differentiating the selection frequencies between clusters. In order to find a balance between exploration and exploitation in our genetic algorithm, we propose a system of clustering the starting population and choosing clusters for an evolutionary algorithm run via a dynamic probability that is dependent on the fitness of molecules generated by each cluster. We define four parameters, MFavOvrAll-A, MFavClus-B, NoNewFavClus-C, and Select-D, that correspond to a reward for producing the best structure overall, a reward for producing the best structure in its own cluster, a penalty for not producing the best structure, and a penalty based on the selection ratio of the cluster, respectively. A reward increases the probability of a cluster’s future selection, while a penalty decreases it. In order to optimize these four parameters, we used a Gaussian distribution to approximate the evolutionary algorithm performance of each cluster and performed a grid search for different parameter combinations. Results show parameter MFavOvrAll-A (rewarding clusters for producing the best structure overall) and parameter Select-D (appearance penalty) have a significantly larger effect than parameters MFavClus-B and NoNewFavClus-C. In order to produce the most successful models, a balance between MFavOvrAll-A and Select-D must be made that reflects the exploitation vs exploration trade-off often seen in reinforcement learning algorithms. Results show that our reinforcement-learning-based method for selecting clusters outperforms an unclustered evolutionary algorithm for quinoline-like structure searches.","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140591987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}