Madhumitha Dhanasekaran*, Varaha P. Sarvothaman*, Paolo Guida and William L. Roberts,
{"title":"Mechanistic Insights into Paracetamol Crystallization: Exploring Ultrasound and Hydrodynamic Cavitation with Quartz Crystal Microbalance Dissipation","authors":"Madhumitha Dhanasekaran*, Varaha P. Sarvothaman*, Paolo Guida and William L. Roberts, ","doi":"10.1021/acsengineeringau.4c0003610.1021/acsengineeringau.4c00036","DOIUrl":null,"url":null,"abstract":"<p >Crystallization is a crucial process in the purification of active pharmaceutical ingredients (APIs). Achieving controlled and efficient crystal formation is vital in successful production for industrial applications. This study investigates the crystallization of paracetamol using a model system, focusing on two techniques: ultrasound cavitation (UC) and hydrodynamic cavitation (HC). The role of cavitation in enhancing crystallization is well-established by using ultrasound. However, the crystallization process utilizing HC, especially in the absence of an antisolvent, is not investigated. A detailed investigation is still necessary to understand the nucleation process at the molecular level. This work primarily focuses on forming paracetamol crystals in an aqueous medium without the need for an antisolvent in HC. To address the nucleation study at the molecular level, the quartz crystal microbalance with dissipation (QCM-D) technique was employed to explore the nucleation kinetics of paracetamol crystallization while the solution is cooling. QCM-D allowed for real-time monitoring of mass changes and viscoelastic properties on the sensor surface, providing valuable insights into the adsorption, growth, and dissolution kinetics of paracetamol crystals under the influence of both cavitation techniques. The study revealed distinct crystallization behaviors depending on the type and intensity of cavitation, shedding light on the underlying mechanisms and potential implications for pharmaceutical manufacturing and formulation. These findings indicate that high-quality crystals can be produced using HC without the need for an antisolvent. This work highlights the significant potential for improving the efficiency and control of paracetamol crystallization and plays an important role in scaling up the crystallization process using HC.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"5 1","pages":"36–44 36–44"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.4c00036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.4c00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Crystallization is a crucial process in the purification of active pharmaceutical ingredients (APIs). Achieving controlled and efficient crystal formation is vital in successful production for industrial applications. This study investigates the crystallization of paracetamol using a model system, focusing on two techniques: ultrasound cavitation (UC) and hydrodynamic cavitation (HC). The role of cavitation in enhancing crystallization is well-established by using ultrasound. However, the crystallization process utilizing HC, especially in the absence of an antisolvent, is not investigated. A detailed investigation is still necessary to understand the nucleation process at the molecular level. This work primarily focuses on forming paracetamol crystals in an aqueous medium without the need for an antisolvent in HC. To address the nucleation study at the molecular level, the quartz crystal microbalance with dissipation (QCM-D) technique was employed to explore the nucleation kinetics of paracetamol crystallization while the solution is cooling. QCM-D allowed for real-time monitoring of mass changes and viscoelastic properties on the sensor surface, providing valuable insights into the adsorption, growth, and dissolution kinetics of paracetamol crystals under the influence of both cavitation techniques. The study revealed distinct crystallization behaviors depending on the type and intensity of cavitation, shedding light on the underlying mechanisms and potential implications for pharmaceutical manufacturing and formulation. These findings indicate that high-quality crystals can be produced using HC without the need for an antisolvent. This work highlights the significant potential for improving the efficiency and control of paracetamol crystallization and plays an important role in scaling up the crystallization process using HC.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)