ACS Environmental Au最新文献

筛选
英文 中文
Revealing the Sources of Cadmium in Rice Plants under Pot and Field Conditions from Its Isotopic Fractionation 从同位素分馏揭示盆栽和田间条件下水稻植株中镉的来源
ACS Environmental Au Pub Date : 2024-02-01 DOI: 10.1021/acsenvironau.3c00067
Qiang Dong, Cailing Xiao, Wenhan Cheng, Huimin Yu, Juan Liu, Guangliang Liu, Yanwei Liu, Yingying Guo, Yong Liang*, Jianbo Shi, Yongguang Yin*, Yong Cai and Guibin Jiang, 
{"title":"Revealing the Sources of Cadmium in Rice Plants under Pot and Field Conditions from Its Isotopic Fractionation","authors":"Qiang Dong,&nbsp;Cailing Xiao,&nbsp;Wenhan Cheng,&nbsp;Huimin Yu,&nbsp;Juan Liu,&nbsp;Guangliang Liu,&nbsp;Yanwei Liu,&nbsp;Yingying Guo,&nbsp;Yong Liang*,&nbsp;Jianbo Shi,&nbsp;Yongguang Yin*,&nbsp;Yong Cai and Guibin Jiang,&nbsp;","doi":"10.1021/acsenvironau.3c00067","DOIUrl":"10.1021/acsenvironau.3c00067","url":null,"abstract":"<p >The highly excessive uptake of cadmium (Cd) by rice plants is well known, but the transfer pathway and mechanism of Cd in the paddy system remain poorly understood. Herein, pot experiments and field investigation were systematically carried out for the first time to assess the phytoavailability of Cd and fingerprint its transfer pathway in the paddy system under different treatments (slaked lime and biochar amendments), with the aid of a pioneering Cd isotopic technique. Results unveiled that no obvious differences were displayed in the δ<sup>114/110</sup>Cd of Ca(NO<sub>3</sub>)<sub>2</sub>-extractable and acid-soluble fractions among different treatments in pot experiments, while the δ<sup>114/110</sup>Cd of the water-soluble fraction varied considerably from −0.88 to −0.27%, similar to those observed in whole rice plant [Δ<sup>114/110</sup>Cd<sub>plant–water</sub> ≈ 0 (−0.06 to −0.03%)]. It indicates that the water-soluble fraction is likely the main source of phytoavailable Cd, which further contributes to its bioaccumulation in paddy systems. However, Δ<sup>114/110</sup>Cd<sub>plant–water</sub> found in field conditions (−0.39 ± 0.05%) was quite different from those observed in pot experiments, mostly owing to additional contribution derived from atmospheric deposition. All these findings demonstrate that the precise Cd isotopic compositions can provide robust and reliable evidence to reveal different transfer pathways of Cd and its phytoavailability in paddy systems.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"4 3","pages":"162–172"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139658290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward Digitalization of Fishing Vessels to Achieve Higher Environmental and Economic Sustainability 实现渔船数字化,提高环境和经济可持续性
ACS Environmental Au Pub Date : 2024-01-24 DOI: 10.1021/acsenvironau.3c00013
Zigor Uriondo*, Jose A. Fernandes-Salvador, Karl-Johan Reite, Iñaki Quincoces and Kayvan Pazouki, 
{"title":"Toward Digitalization of Fishing Vessels to Achieve Higher Environmental and Economic Sustainability","authors":"Zigor Uriondo*,&nbsp;Jose A. Fernandes-Salvador,&nbsp;Karl-Johan Reite,&nbsp;Iñaki Quincoces and Kayvan Pazouki,&nbsp;","doi":"10.1021/acsenvironau.3c00013","DOIUrl":"10.1021/acsenvironau.3c00013","url":null,"abstract":"<p >Fishing vessels need to adapt to and mitigate climate changes, but solution development requires better information about the environment and vessel operations. Even if ships generate large amounts of potentially useful data, there is a large variety of sources and formats. This lack of standardization makes identification and use of key data challenging and hinders its use in improving operational performance and vessel design. The work described in this paper aims to provide cost-effective tools for systematic data acquisition for fishing vessels, supporting digitalization of the fishing vessel operation and performance monitoring. This digitalization is needed to facilitate the reduction of emissions as a critical environmental problem and industry costs critical for industry sustainability. The resulting monitoring system interfaces onboard systems and sensors, processes the data, and makes it available in a shared onboard data space. From this data space, 209 signals are recorded at different frequencies and uploaded to onshore servers for postprocessing. The collected data describe both ship operation, onboard energy system, and the surrounding environment. Nine of the oceanographic variables have been preselected to be potentially useful for public scientific repositories, such as Copernicus and EMODnet. The data are also used for fuel prediction models, species distribution models, and route optimization models.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"4 3","pages":"142–151"},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139556200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Celebrating and Charting a Future for ACS Environmental Au 庆祝并规划 ACS Environmental Au 的未来
ACS Environmental Au Pub Date : 2024-01-17 DOI: 10.1021/acsenvironau.3c00080
Yi Jiang*,  and , Xiangdong Li*, 
{"title":"Celebrating and Charting a Future for ACS Environmental Au","authors":"Yi Jiang*,&nbsp; and ,&nbsp;Xiangdong Li*,&nbsp;","doi":"10.1021/acsenvironau.3c00080","DOIUrl":"https://doi.org/10.1021/acsenvironau.3c00080","url":null,"abstract":"","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"4 1","pages":"1–2"},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139479764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Per/Polyfluoroalkyl Substances (PFASs) in a Marine Apex Predator (White Shark, Carcharodon carcharias) in the Northwest Atlantic Ocean 西北大西洋一种海洋顶级掠食者(白鲨)体内的全氟/多氟烷基物质 (PFAS)
ACS Environmental Au Pub Date : 2024-01-14 DOI: 10.1021/acsenvironau.3c00055
Jennifer Marciano, Lisa Crawford, Leenia Mukhopadhyay, Wesley Scott, Anne McElroy and Carrie McDonough*, 
{"title":"Per/Polyfluoroalkyl Substances (PFASs) in a Marine Apex Predator (White Shark, Carcharodon carcharias) in the Northwest Atlantic Ocean","authors":"Jennifer Marciano,&nbsp;Lisa Crawford,&nbsp;Leenia Mukhopadhyay,&nbsp;Wesley Scott,&nbsp;Anne McElroy and Carrie McDonough*,&nbsp;","doi":"10.1021/acsenvironau.3c00055","DOIUrl":"10.1021/acsenvironau.3c00055","url":null,"abstract":"<p >Per/polyfluoroalkyl substances (PFASs) are ubiquitous, highly persistent anthropogenic chemicals that bioaccumulate and biomagnify in aquatic food webs and are associated with adverse health effects, including liver and kidney diseases, cancers, and immunosuppression. We investigated the accumulation of PFASs in a marine apex predator, the white shark (<i>Carcharodon carcharias</i>). Muscle (<i>N</i> = 12) and blood plasma (<i>N</i> = 27) samples were collected from 27 sharks during 2018–2021 OCEARCH expeditions along the eastern coast of North America from Nova Scotia to Florida. Samples were analyzed for 47 (plasma) and 43 (muscle) targeted PFASs and screened for &gt;2600 known and novel PFASs using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Perfluoroalkyl carboxylates with carbon chain-length C11 to C14 were frequently detected above the method reporting limits in plasma samples, along with perfluorooctanesulfonate and perfluorodecanesulfonate. Perfluoropentadecanoate was also detected in 100% of plasma samples and concentrations were estimated semiquantitatively as no analytical standard was available. Total concentrations of frequently detected PFASs in plasma ranged from 0.56 to 2.9 ng mL<sup>–1</sup> (median of 1.4 ng mL<sup>–1</sup>). In muscle tissue, nine targeted PFASs were frequently detected, with total concentration ranging from 0.20 to 0.84 ng g<sup>–1</sup> ww. For all frequently detected PFASs, concentrations were greater in plasma than in muscle collected from the same organism. In both matrices, perfluorotridecanoic acid was the most abundant PFAS, consistent with several other studies. PFASs with similar chain-lengths correlated significantly among the plasma samples, suggesting similar sources. Total concentrations of PFASs in plasma were significantly greater in sharks sampled off of Nova Scotia than all sharks from other locations, potentially due to differences in diet. HRMS suspect screening tentatively identified 13 additional PFASs in plasma, though identification confidence was low, as no MS/MS fragmentation was collected due to low intensities. The widespread detection of long-chain PFASs in plasma and muscle of white sharks highlights the prevalence and potential biomagnification of these compounds in marine apex predators.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"4 3","pages":"152–161"},"PeriodicalIF":0.0,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139482043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Term Robustness and Failure Mechanisms of Electrochemical Stripping for Wastewater Ammonia Recovery 用于废水氨回收的电化学剥离的长期稳健性和失效机理
ACS Environmental Au Pub Date : 2024-01-12 DOI: 10.1021/acsenvironau.3c00058
Anna Kogler, Neha Sharma, Diana Tiburcio, Meili Gong, Dean M. Miller, Kindle S. Williams, Xi Chen and William A. Tarpeh*, 
{"title":"Long-Term Robustness and Failure Mechanisms of Electrochemical Stripping for Wastewater Ammonia Recovery","authors":"Anna Kogler,&nbsp;Neha Sharma,&nbsp;Diana Tiburcio,&nbsp;Meili Gong,&nbsp;Dean M. Miller,&nbsp;Kindle S. Williams,&nbsp;Xi Chen and William A. Tarpeh*,&nbsp;","doi":"10.1021/acsenvironau.3c00058","DOIUrl":"10.1021/acsenvironau.3c00058","url":null,"abstract":"<p >Nitrogen in wastewater has negative environmental, human health, and economic impacts but can be recovered to reduce the costs and environmental impacts of wastewater treatment and chemical production. To recover ammonia/ammonium (total ammonia nitrogen, TAN) from urine, we operated electrochemical stripping (ECS) for over a month, achieving 83.4 ± 1.5% TAN removal and 73.0 ± 2.9% TAN recovery. With two reactors, we recovered sixteen 500-mL batches (8 L total) of ammonium sulfate (20.9 g/L TAN) approaching commercial fertilizer concentrations (28.4 g/L TAN) and often having &gt;95% purity. While evaluating the operation and maintenance needs, we identified pH, full-cell voltage, product volume, and water flux into the product as informative process monitoring parameters that can be inexpensively and rapidly measured. Characterization of fouled cation exchange and omniphobic membranes informs cleaning and reactor modifications to reduce fouling with organics and calcium/magnesium salts. To evaluate the impact of urine collection and storage on ECS, we conducted experiments with urine at different levels of dilution with flush water, extents of divalent cation precipitation, and degrees of hydrolysis. ECS effectively treated urine under all conditions, but minimizing flush water and ensuring storage until complete hydrolysis would enable energy-efficient TAN recovery. Our experimental results and cost analysis motivate a multifaceted approach to improving ECS’s technical and economic viability by extending component lifetimes, decreasing component costs, and reducing energy consumption through material, reactor, and process engineering. In summary, we demonstrated urine treatment as a foothold for electrochemical nutrient recovery from wastewater while supporting the applicability of ECS to seven other wastewaters with widely varying characteristics. Our findings will facilitate the scale-up and deployment of electrochemical nutrient recovery technologies, enabling a circular nitrogen economy that fosters sanitation provision, efficient chemical production, and water resource protection.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"4 2","pages":"89–105"},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139460753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Investigation of 6PPD-Quinone in Rubberized Asphalt Concrete Mixtures” 对 "橡胶沥青混凝土混合物中 6PPD-Quinone 的调查 "的更正
ACS Environmental Au Pub Date : 2024-01-12 DOI: 10.1021/acsenvironau.3c00077
Srinidhi Lokesh, Siththarththan Arunthavabalan, Ryan S. Stanton, Alon R. Agua, Michael C. Pirrung, Elie Y. Hajj, Edgard Hitti and Yu Yang*, 
{"title":"Correction to “Investigation of 6PPD-Quinone in Rubberized Asphalt Concrete Mixtures”","authors":"Srinidhi Lokesh,&nbsp;Siththarththan Arunthavabalan,&nbsp;Ryan S. Stanton,&nbsp;Alon R. Agua,&nbsp;Michael C. Pirrung,&nbsp;Elie Y. Hajj,&nbsp;Edgard Hitti and Yu Yang*,&nbsp;","doi":"10.1021/acsenvironau.3c00077","DOIUrl":"10.1021/acsenvironau.3c00077","url":null,"abstract":"","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"4 2","pages":"126"},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00077","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139460662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visible-Light-Driven Mentha spicata L.-Mediated Ag-Doped Bi2Zr2O7 Nanocomposite for Enhanced Degradation of Organic Pollutants, Electrochemical Sensing, and Antibacterial Applications 可见光驱动的薄荷掺银 Bi2Zr2O7 纳米复合材料用于增强有机污染物降解、电化学传感和抗菌应用
ACS Environmental Au Pub Date : 2024-01-09 DOI: 10.1021/acsenvironau.3c00057
Kurlla Pompapathi, Kurupalya Shivram Anantharaju*, Periyakaruppan Karuppasamy*, Meena Subramaniam, Bogegowda Uma, Surendra Boppanahalli Siddegowda, Arpita Paul Chowdhury and H. C. Ananda Murthy*, 
{"title":"Visible-Light-Driven Mentha spicata L.-Mediated Ag-Doped Bi2Zr2O7 Nanocomposite for Enhanced Degradation of Organic Pollutants, Electrochemical Sensing, and Antibacterial Applications","authors":"Kurlla Pompapathi,&nbsp;Kurupalya Shivram Anantharaju*,&nbsp;Periyakaruppan Karuppasamy*,&nbsp;Meena Subramaniam,&nbsp;Bogegowda Uma,&nbsp;Surendra Boppanahalli Siddegowda,&nbsp;Arpita Paul Chowdhury and H. C. Ananda Murthy*,&nbsp;","doi":"10.1021/acsenvironau.3c00057","DOIUrl":"10.1021/acsenvironau.3c00057","url":null,"abstract":"<p >Novel visible-light-driven Ag (<i>X</i>)-doped Bi<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (BZO) nanocomposites in pudina (P) extract (<i>Mentha spicata</i> L.), <i>X</i>-1, 3, 5, 7, and 9 mol %, were synthesized by the one-pot greener solution combustion method. The as-synthesized nanocomposite materials were characterized by using various spectral [X-ray diffraction (XRD), Fourier transform infrared, UV–visible, UV– diffuse reflectance spectra, X-ray photoelectron spectroscopy], electrochemical (cyclic voltammetry, electrochemical impedance spectroscopy), and analytical (scanning electron microscopy–energy-dispersive X-ray spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller) techniques. The average particle size of the nanocomposite material was found to be between 14.8 and 39.2 nm by XRD. The well-characterized Ag-doped BZOP nanocomposite materials exhibited enhanced photocatalytic degradation activity toward hazardous dyes such as methylene blue (MB) and rose bengal (RB) under visible light irradiation ranges between 400 and 800 nm due to their low energy band gap. As a result, 7 mol % of Ag-doped BZOP nanocomposite material exhibited excellent photodegradation activity against MB (D.E. = 98.7%) and RB (D.E. = 99.3%) as compared to other Ag-doped BZOP nanocomposite materials and pure BZOP nanocomposite, respectively, due to enhanced semiconducting and optical behaviors, high binding energy, and mechanical and thermal stabilities. The Ag-doped BZOP nanocomposite material-based electrochemical sensor showed good sensing ability toward the determination of lead nitrate and dextrose with the lowest limit of detection (LOD) of 18 μM and 12 μM, respectively. Furthermore, as a result of the initial antibacterial screening study, the Ag-doped BZOP nanocomposite material was found to be more effective against Gram-negative bacteria (<i>Escherichia coli</i>) as compared to Gram-positive (<i>Staphylococcus aureus</i>) bacteria. The scavenger study reveals that radicals such as O<sub>2</sub><sup>•–</sup> and <sup>•</sup>OH are responsible for MB and RB mineralization. TOC removal percentages were found to be 96.8 and 98.5% for MB and RB dyes, and experimental data reveal that the Ag-doped BZOP enhances the radical (O<sub>2</sub><sup>•–</sup> and <sup>•</sup>OH) formation and MB and RB degradation under visible-light irradiation.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"4 2","pages":"106–125"},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139412987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Cross-Linking of MXene-Intercalated Graphene Oxide Membranes with Antiswelling Properties for Dye and Salt Rejection 自交联的具有抗溶胀特性的 MXene-Intercalated 氧化石墨烯膜可用于染料和盐的阻隔
ACS Environmental Au Pub Date : 2024-01-08 DOI: 10.1021/acsenvironau.3c00059
Saurabh Kr Tiwary, Maninderjeet Singh, Farzana Hasan Likhi, Siddharaj Dabade, Jack F. Douglas and Alamgir Karim*, 
{"title":"Self-Cross-Linking of MXene-Intercalated Graphene Oxide Membranes with Antiswelling Properties for Dye and Salt Rejection","authors":"Saurabh Kr Tiwary,&nbsp;Maninderjeet Singh,&nbsp;Farzana Hasan Likhi,&nbsp;Siddharaj Dabade,&nbsp;Jack F. Douglas and Alamgir Karim*,&nbsp;","doi":"10.1021/acsenvironau.3c00059","DOIUrl":"10.1021/acsenvironau.3c00059","url":null,"abstract":"<p >Membrane-based water purification is poised to play an important role in tackling the potable water crisis for safe and clean water access for the general population. Several studies have focused on near two-dimensional membranes for this purpose, which is based on an ion rejection technique. However, membrane swelling in these materials has emerged as a significant challenge because it leads to the loss of function. Herein, we report a self-cross-linked MXene-intercalated graphene oxide (GO) membrane that retains ion and dye rejection properties because the physical cross-linking interaction between Ti–O–Ti and neighboring nanosheets effectively suppresses the swelling of the membrane. In addition to the associative Ti–O–Ti bonds, C–O–C, O═C–O, and C–OH bonds are also formed, which are important for inhibiting the swelling of the membrane. To ensure the longevity of these membranes in a service context, they were subjected to heat pressurization and subsequent thermal annealing. The membrane subjected to this novel processing history exhibits minimal swelling upon immersion in solutions and retains function, rejecting salt and dyes over a wide range of salt and dye concentrations. Furthermore, these membranes successfully rejected dye and salt over a period of 72 h without a degradation of function, suggesting that these membranes have the requisite durability for water filtration applications.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"4 2","pages":"69–79"},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139415455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activated Carbon Electrodes for Supercapacitors from Purple Corncob (Zea mays L.) 从紫色玉米芯(玉米)中提取用于超级电容器的活性炭电极
ACS Environmental Au Pub Date : 2024-01-05 DOI: 10.1021/acsenvironau.3c00048
Emily Huarote-Garcia, Andy A. Cardenas-Riojas, Ivonne E. Monje, Elvis O. López, Ofelia M. Arias-Pinedo, Gabriel A. Planes and Angélica M. Baena-Moncada*, 
{"title":"Activated Carbon Electrodes for Supercapacitors from Purple Corncob (Zea mays L.)","authors":"Emily Huarote-Garcia,&nbsp;Andy A. Cardenas-Riojas,&nbsp;Ivonne E. Monje,&nbsp;Elvis O. López,&nbsp;Ofelia M. Arias-Pinedo,&nbsp;Gabriel A. Planes and Angélica M. Baena-Moncada*,&nbsp;","doi":"10.1021/acsenvironau.3c00048","DOIUrl":"10.1021/acsenvironau.3c00048","url":null,"abstract":"<p >Activated carbon-based supercapacitor electrodes synthesized from biomass or waste-derived biomass have recently attracted considerable attention because of their low cost, natural abundance, and power delivery performance. In this work, purple-corncob-based active carbons are prepared by KOH activation and subsequently evaluated as a composite electrode for supercapacitors using either an acidic or an alkali solution as the electrolyte. The synthesis of the material involves mixing the purple corncob powder with different concentrations of KOH (in the range of 5% to 30%) and a thermal treatment at 700 °C under an inert atmosphere. Physicochemical characterizations were performed using scanning electron microscopy, Raman spectroscopy, N<sub>2</sub> physisorption analysis, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy, while the electrochemical characteristics were determined using cyclic voltammetry, a galvanostatic charge/discharge curve, and electrochemical impedance techniques measured in a three- and two-electrode system. Composite electrodes activated with 10% KOH had a specific surface area of 728 m<sup>2</sup> g<sup>–1</sup>, and high capacitances of 195 F g<sup>–1</sup> at 0.5 A g<sup>–1</sup> in 1 mol L<sup>–1</sup> H<sub>2</sub>SO<sub>4</sub> and 116 F g<sup>–1</sup> at 0.5 A g<sup>–1</sup> in 1 mol L<sup>–1</sup> KOH were obtained. It also presented a 76% capacitance retention after 50 000 cycles. These properties depend significantly on the microporous area and micropore volume characteristics of the activated carbon. Overall, our results indicate that purple corncob has an interesting prospect as a carbon precursor material for supercapacitor electrodes.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"4 2","pages":"80–88"},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00048","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139374724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Materials Science Toolkit for Carbon Footprint Assessment: A Case Study for Endoscopic Accessories of Common Use 碳足迹评估材料科学工具包:内窥镜常用配件案例研究
ACS Environmental Au Pub Date : 2023-12-29 DOI: 10.1021/acsenvironau.3c00044
Rubén Martín-Cabezuelo*, Guillermo Vilariño-Feltrer, Alberto J. Campillo-Fernández*, Vicente Lorenzo-Zúñiga, Vicente Pons, Pedro López-Muñoz and Isabel Tort-Ausina, 
{"title":"Materials Science Toolkit for Carbon Footprint Assessment: A Case Study for Endoscopic Accessories of Common Use","authors":"Rubén Martín-Cabezuelo*,&nbsp;Guillermo Vilariño-Feltrer,&nbsp;Alberto J. Campillo-Fernández*,&nbsp;Vicente Lorenzo-Zúñiga,&nbsp;Vicente Pons,&nbsp;Pedro López-Muñoz and Isabel Tort-Ausina,&nbsp;","doi":"10.1021/acsenvironau.3c00044","DOIUrl":"10.1021/acsenvironau.3c00044","url":null,"abstract":"<p >Ironically, healthcare systems are key agents in respiratory-related diseases and estimated deaths because of the high impact of their greenhouse gas emissions, along with industry, transportation, and housing. Based on safety requirements, hospitals and related services use an extensive number of consumables, most of which end up incinerated at the end of their life cycle. A thorough assessment of the carbon footprint of such devices typically requires knowing precise information about the manufacturing process, which is rarely available in detail because of the many materials, pieces, and steps involved during the fabrication. Yet, the tools most often used for determining the environmental impact of consumer goods require a bunch of parameters, mainly based on the material composition of the device. Here, we report a basic set of analytical methods that provide the information required by the software OpenLCA to calculate the main outcome related to environmental impact, greenhouse gas emissions. Through thermogravimetry, calorimetry, infrared spectroscopy, and elemental analysis, we proved that obtaining relevant data for the calculator in the exemplifying case of endoscopy tooling or accessories is possible. This routine procedure opens the door to a broader, more accurate analysis of the environmental impact of everyday work at hospital services, offering potential alternatives to minimize it.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"4 1","pages":"42–50"},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139084181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信