Machine Learning Reveals Signatures of Promiscuous Microbial Amidases for Micropollutant Biotransformations

IF 6.7 Q1 ENGINEERING, ENVIRONMENTAL
Thierry D. Marti, Diana Schweizer, Yaochun Yu, Milo R. Schärer, Silke I. Probst and Serina L. Robinson*, 
{"title":"Machine Learning Reveals Signatures of Promiscuous Microbial Amidases for Micropollutant Biotransformations","authors":"Thierry D. Marti,&nbsp;Diana Schweizer,&nbsp;Yaochun Yu,&nbsp;Milo R. Schärer,&nbsp;Silke I. Probst and Serina L. Robinson*,&nbsp;","doi":"10.1021/acsenvironau.4c0006610.1021/acsenvironau.4c00066","DOIUrl":null,"url":null,"abstract":"<p >Organic micropollutants, including pharmaceuticals, personal care products, pesticides, and food additives, are widespread in the environment, causing potentially toxic effects. Human waste is a direct source of micropollutants, with the majority of pharmaceuticals being excreted through urine. Urine contains its own microbiota with the potential to catalyze micropollutant biotransformations. Amidase signature (AS) enzymes are known for their promiscuous activity in micropollutant biotransformations, but the potential for AS enzymes from the urinary microbiota to transform micropollutants is not known. Moreover, the characterization of AS enzymes to identify key chemical and enzymatic features associated with biotransformation profiles is critical for developing benign-by-design chemicals and micropollutant removal strategies. Here, to uncover the signatures of AS enzyme–substrate specificity, we tested 17 structurally diverse compounds against a targeted enzyme library consisting of 40 AS enzyme homologues from diverse urine microbial isolates. The most promiscuous enzymes were active on nine different substrates, while 16 enzymes had activity on at least one substrate and exhibited diverse substrate specificities. Using an interpretable gradient boosting machine learning model, we identified chemical and amino acid features associated with AS enzyme biotransformations. Key chemical features from our substrates included the molecular weight of the amide carbonyl substituent and the number of formal charges in the molecule. Four of the identified amino acid features were located in close proximity to the substrate tunnel entrance. Overall, this work highlights the understudied potential of urine-derived microbial AS enzymes for micropollutant biotransformation and offers insights into substrate and protein features associated with micropollutant biotransformations for future environmental applications.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 1","pages":"114–127 114–127"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.4c00066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenvironau.4c00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organic micropollutants, including pharmaceuticals, personal care products, pesticides, and food additives, are widespread in the environment, causing potentially toxic effects. Human waste is a direct source of micropollutants, with the majority of pharmaceuticals being excreted through urine. Urine contains its own microbiota with the potential to catalyze micropollutant biotransformations. Amidase signature (AS) enzymes are known for their promiscuous activity in micropollutant biotransformations, but the potential for AS enzymes from the urinary microbiota to transform micropollutants is not known. Moreover, the characterization of AS enzymes to identify key chemical and enzymatic features associated with biotransformation profiles is critical for developing benign-by-design chemicals and micropollutant removal strategies. Here, to uncover the signatures of AS enzyme–substrate specificity, we tested 17 structurally diverse compounds against a targeted enzyme library consisting of 40 AS enzyme homologues from diverse urine microbial isolates. The most promiscuous enzymes were active on nine different substrates, while 16 enzymes had activity on at least one substrate and exhibited diverse substrate specificities. Using an interpretable gradient boosting machine learning model, we identified chemical and amino acid features associated with AS enzyme biotransformations. Key chemical features from our substrates included the molecular weight of the amide carbonyl substituent and the number of formal charges in the molecule. Four of the identified amino acid features were located in close proximity to the substrate tunnel entrance. Overall, this work highlights the understudied potential of urine-derived microbial AS enzymes for micropollutant biotransformation and offers insights into substrate and protein features associated with micropollutant biotransformations for future environmental applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Environmental Au
ACS Environmental Au 环境科学-
CiteScore
7.10
自引率
0.00%
发文量
0
期刊介绍: ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信