ACS Environmental Au最新文献

筛选
英文 中文
Recent Advances in Technologies for Phosphate Removal and Recovery: A Review 磷酸盐去除和回收技术的最新进展:综述
ACS Environmental Au Pub Date : 2024-09-11 DOI: 10.1021/acsenvironau.3c00069
Mallikarjuna N. Nadagouda, Gaiven Varshney, Vikas Varshney, Charifa A. Hejase
{"title":"Recent Advances in Technologies for Phosphate Removal and Recovery: A Review","authors":"Mallikarjuna N. Nadagouda, Gaiven Varshney, Vikas Varshney, Charifa A. Hejase","doi":"10.1021/acsenvironau.3c00069","DOIUrl":"https://doi.org/10.1021/acsenvironau.3c00069","url":null,"abstract":"Phosphorus is a nonrenewable resource, yet an essential nutrient in crop fertilizers that helps meet growing agricultural and food demands. As a limiting nutrient for primary producers, an excess amount of phosphorus entering water sources through agricultural runoff can lead to eutrophication events downstream. Therefore, to address global issues associated with the depletion of phosphate rock reserves and minimize the eutrophication of water bodies, numerous studies have investigated the removal and recovery of phosphates in usable forms using various chemical, physical, and biological methods. This review provides a comprehensive and critical evaluation of the literature, focusing on the widely employed adsorption and chemical precipitation for phosphate recovery from various wastewaters. Several experimental performance parameters including temperature, pH, coexisting ions (e.g., NO<sub>3</sub><sup>–</sup>, HCO<sub>3</sub><sup>–</sup>, Cl<sup>–</sup>, SO<sub>4</sub><sup>2–</sup>), surface area, porosity, and calcination are highlighted for their importance in optimizing adsorption capacity and struvite crystallization/precipitation. Furthermore, the morphological and structural characterization of various selected adsorbents and precipitated struvite crystals is discussed.","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial Community Changes across Time and Space in a Constructed Wetland 人工湿地微生物群落的时空变化
ACS Environmental Au Pub Date : 2024-07-26 DOI: 10.1021/acsenvironau.4c00021
Zeinah Elhaj Baddar, Raven Bier, Breann Spencer, Xiaoyu Xu
{"title":"Microbial Community Changes across Time and Space in a Constructed Wetland","authors":"Zeinah Elhaj Baddar, Raven Bier, Breann Spencer, Xiaoyu Xu","doi":"10.1021/acsenvironau.4c00021","DOIUrl":"https://doi.org/10.1021/acsenvironau.4c00021","url":null,"abstract":"Constructed wetlands are artificial ecosystems designed to replicate natural wetland processes. Microbial communities play a pivotal role in cycling essential elements, particularly sulfur, which is crucial for trace metal fixation and remobilization in these ecosystems. By their response to their environment, microbial communities act as biological indicators of the wetland performance. To address knowledge gaps pertinent to the changes in trace metal bioavailability in relation to microbial activities in the H-02 constructed wetland, we performed this study to investigate temporal and spatial variations in microbial communities by using molecular biology tools. Quantitative polymerase chain reaction and next generation sequencing techniques were employed to analyze archaeal and bacterial groups associated with sulfur and methane cycling. Alpha diversity indices were used to assess species richness, evenness, and dominance. Results indicated high gene abundance of Desulfuromonas (5.37 × 10<sup>6</sup> g.cell<sup>–1</sup>), methane oxidizing bacteria (6.92 × 10<sup>6</sup> g.cell<sup>–1</sup>), and methanogenic microorganisms (3.02 × 10<sup>5</sup> g.cell<sup>–1</sup>) during cool months. Warm months were marked by sulfate reducing bacteria dominance (3.31 × 10<sup>6</sup> g.cell<sup>–1</sup>), potentially due to competitive interactions and environmental conditions, higher temperatures, and lower redox potential. Spatial variability among microbial groups was insignificant, but trends in gene abundance indicated complex factors influencing these groups. Next generation sequencing data demonstrated Firmicutes as the most abundant phylum with over 50% regardless of the season or sampling location. Cool months exhibited higher alpha diversity than warm months. Overall, this study showed that seasonal changes significantly impacted the microbial communities in the H-02 constructed wetland that are associated with the sulfur cycle and eventually trace metal biogeochemistry, revealing two distinct mechanisms of the sulfur cycle between the two main seasons, whereas spatial variability effects were not conclusive.","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous Oxidation of Trace Organics and Sorption of Trace Metals by Ferrate (Fe(VI))-Coated Sand in Synthetic Wastewater Effluent
IF 6.7
ACS Environmental Au Pub Date : 2024-07-10 DOI: 10.1021/acsenvironau.4c0002410.1021/acsenvironau.4c00024
Fanny E. K. Okaikue-Woodi, Reyna Morales Lumagui and Jessica R. Ray*, 
{"title":"Simultaneous Oxidation of Trace Organics and Sorption of Trace Metals by Ferrate (Fe(VI))-Coated Sand in Synthetic Wastewater Effluent","authors":"Fanny E. K. Okaikue-Woodi,&nbsp;Reyna Morales Lumagui and Jessica R. Ray*,&nbsp;","doi":"10.1021/acsenvironau.4c0002410.1021/acsenvironau.4c00024","DOIUrl":"https://doi.org/10.1021/acsenvironau.4c00024https://doi.org/10.1021/acsenvironau.4c00024","url":null,"abstract":"<p >The increased presence of toxic chemicals in aquatic matrices and their associated health effects raise the need for more effective treatment technologies. The application of Fe(VI), an advanced oxidation treatment agent with disinfecting and coagulating capabilities, is limited by Fe(VI) aqueous instability. Our previous study proposed an Fe(VI)-coated sand media to overcome this constraint and demonstrated that Fe(VI)-coated sand was an effective medium for the treatment of phenolic compounds. In this study, we assessed the potential of the media for treatment of acetaminophen (ACM), benzotriazole (BZT), sulfamethoxazole (SMX), copper (Cu), lead (Pb), and zinc (Zn)─common contaminants found in wastewater effluents─in ultrapure and synthetic wastewater effluent. Fe(VI)-coated sand reactivity was influenced by the solution pH and aqueous chemistry. For example, the removal of Pb improved by 39% in the presence of trace organics, indicating that trace metal removal was enhanced by Fe(III) phases formed during Fe(VI) reactions with trace organics. While oxidation of trace organic compounds increased as pH decreased, trace metal sorption was more favorable at higher pH (i.e., pH 8 and 9). The oxidation efficiency of trace organics by the media was the highest for ACM and SMX while BZT degradation was limited due to formation of Cu–BZT complexes. Batch tests in synthetic wastewater effluent revealed that the presence of divalent cations (i.e., Ca<sup>2+</sup> and Mg<sup>2+</sup>) can catalyze Fe(VI) self-decay and promote Fe(III) production and subsequent trace metal removal; however, oxidation of trace organics was hindered in this matrix. This study highlights the potential for Fe(VI)-coated sand application for the treatment of complex matrices more representative of natural and engineered aquatic systems.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.4c00024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142237614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous Oxidation of Trace Organics and Sorption of Trace Metals by Ferrate (Fe(VI))-Coated Sand in Synthetic Wastewater Effluent 合成洗涤剂废水中铁酸铜(Fe(VI))包覆砂对痕量有机物的同时氧化作用和对痕量金属的吸附作用
IF 6.7
ACS Environmental Au Pub Date : 2024-07-10 DOI: 10.1021/acsenvironau.4c00024
Fanny E. K. Okaikue-Woodi, Reyna Morales Lumagui, Jessica R. Ray
{"title":"Simultaneous Oxidation of Trace Organics and Sorption of Trace Metals by Ferrate (Fe(VI))-Coated Sand in Synthetic Wastewater Effluent","authors":"Fanny E. K. Okaikue-Woodi, Reyna Morales Lumagui, Jessica R. Ray","doi":"10.1021/acsenvironau.4c00024","DOIUrl":"https://doi.org/10.1021/acsenvironau.4c00024","url":null,"abstract":"","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141662272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Relative Sustainability of Point-of-Use Water Disinfection Technologies for Off-Grid Communities 评估离网社区用水点消毒技术的相对可持续性
ACS Environmental Au Pub Date : 2024-07-09 DOI: 10.1021/acsenvironau.4c00017
Bright C. Elijah, Ali Ahmad, Yalin Li, Jaime Plazas-Tuttle, Lewis S. Rowles
{"title":"Assessing the Relative Sustainability of Point-of-Use Water Disinfection Technologies for Off-Grid Communities","authors":"Bright C. Elijah, Ali Ahmad, Yalin Li, Jaime Plazas-Tuttle, Lewis S. Rowles","doi":"10.1021/acsenvironau.4c00017","DOIUrl":"https://doi.org/10.1021/acsenvironau.4c00017","url":null,"abstract":"Point-of-use (POU) water disinfection technologies can be adopted to provide access to safe drinking water by treating water at the household level; however, navigating various POU disinfection technologies can be difficult. While numerous conventional POU devices exist, emerging technologies using novel materials or advanced processes have been under development and claim to be of lower cost with higher treatment capacity. However, it is unclear if these claims are substantiated and how novel technologies compare to conventional ones in terms of cost and environmental impacts when providing the same service (i.e., achieving a necessary level of disinfection for safe drinking water). This research assessed the sustainability of four different POU technologies (chlorination using sodium hypochlorite, a silver-nanoparticle-enabled ceramic water filter, ultraviolet mercury lamps, and ultraviolet light-emitting diodes). Leveraging open-source Python packages (QSDsan and EXPOsan), the cost and environmental impacts of these POU technologies were assessed using techno-economic analysis and life cycle assessment as per capita cost (USD·cap<sup>–1</sup>·yr<sup>–1</sup>) and global warming potential (kg CO<sub>2</sub> eq·cap<sup>–1</sup>·yr<sup>–1</sup>). Impacts of water quality parameters (e.g., turbidity, hardness) were quantified for both surface water and groundwater, and uncertainty and sensitivity analyses were used to identify which assumptions influence outcomes. All technologies were further evaluated across ranges of adoption times, and contextual analysis was performed to evaluate the implications of technology deployment across the world. Results of this study can potentially provide valuable insights for decision-makers, nonprofit organizations, and future researchers in developing sustainable approaches for ensuring access to safe drinking water through POU technologies.","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141573950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the Relative Sustainability of Point-of-Use Water Disinfection Technologies for Off-Grid Communities
IF 6.7
ACS Environmental Au Pub Date : 2024-07-09 DOI: 10.1021/acsenvironau.4c0001710.1021/acsenvironau.4c00017
Bright C. Elijah, Ali Ahmad, Yalin Li, Jaime Plazas-Tuttle and Lewis S. Rowles*, 
{"title":"Assessing the Relative Sustainability of Point-of-Use Water Disinfection Technologies for Off-Grid Communities","authors":"Bright C. Elijah,&nbsp;Ali Ahmad,&nbsp;Yalin Li,&nbsp;Jaime Plazas-Tuttle and Lewis S. Rowles*,&nbsp;","doi":"10.1021/acsenvironau.4c0001710.1021/acsenvironau.4c00017","DOIUrl":"https://doi.org/10.1021/acsenvironau.4c00017https://doi.org/10.1021/acsenvironau.4c00017","url":null,"abstract":"<p >Point-of-use (POU) water disinfection technologies can be adopted to provide access to safe drinking water by treating water at the household level; however, navigating various POU disinfection technologies can be difficult. While numerous conventional POU devices exist, emerging technologies using novel materials or advanced processes have been under development and claim to be of lower cost with higher treatment capacity. However, it is unclear if these claims are substantiated and how novel technologies compare to conventional ones in terms of cost and environmental impacts when providing the same service (i.e., achieving a necessary level of disinfection for safe drinking water). This research assessed the sustainability of four different POU technologies (chlorination using sodium hypochlorite, a silver-nanoparticle-enabled ceramic water filter, ultraviolet mercury lamps, and ultraviolet light-emitting diodes). Leveraging open-source Python packages (QSDsan and EXPOsan), the cost and environmental impacts of these POU technologies were assessed using techno-economic analysis and life cycle assessment as per capita cost (USD·cap<sup>–1</sup>·yr<sup>–1</sup>) and global warming potential (kg CO<sub>2</sub> eq·cap<sup>–1</sup>·yr<sup>–1</sup>). Impacts of water quality parameters (e.g., turbidity, hardness) were quantified for both surface water and groundwater, and uncertainty and sensitivity analyses were used to identify which assumptions influence outcomes. All technologies were further evaluated across ranges of adoption times, and contextual analysis was performed to evaluate the implications of technology deployment across the world. Results of this study can potentially provide valuable insights for decision-makers, nonprofit organizations, and future researchers in developing sustainable approaches for ensuring access to safe drinking water through POU technologies.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.4c00017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142237558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Safer Solvents for Active Pharmaceutical Ingredient Purification Using Column Chromatography 使用柱色谱法纯化活性药物成分的更安全溶剂
ACS Environmental Au Pub Date : 2024-06-24 DOI: 10.1021/acsenvironau.4c00015
Christian Ayafor, Toren Burton, Nathaniel George, Gregory Morose, Hsi-Wu Wong
{"title":"Safer Solvents for Active Pharmaceutical Ingredient Purification Using Column Chromatography","authors":"Christian Ayafor, Toren Burton, Nathaniel George, Gregory Morose, Hsi-Wu Wong","doi":"10.1021/acsenvironau.4c00015","DOIUrl":"https://doi.org/10.1021/acsenvironau.4c00015","url":null,"abstract":"Column chromatography is a technique widely used for the purification of active pharmaceutical ingredients (APIs). One of the common solvent systems used by this technique is blends of dichloromethane (DCM) and methanol (MeOH), thereby exposing workers to health and safety risks and making the pharmaceutical sector one of the major contributors to chlorinated solvent waste. In this work, API separation and purification using several alternative safer solvent blends in column chromatography were evaluated and compared to DCM/MeOH. Ibuprofen and acetaminophen were used as model APIs, and caffeine was used as a model additive. Overall, some of the safer solvent blends tested provided better performance, with higher API recovery and purity compared to DCM/MeOH, in addition to potential health, safety, and environmental benefits. Specifically, blends of heptane/ethyl acetate and heptane/methyl acetate showed the most promise. Our work demonstrates the potential of these safer solvent blends as possible replacements for DCM/MeOH in API purification, thereby addressing a critical safety concern in the pharmaceutical industry.","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Safer Solvents for Active Pharmaceutical Ingredient Purification Using Column Chromatography
IF 6.7
ACS Environmental Au Pub Date : 2024-06-24 DOI: 10.1021/acsenvironau.4c0001510.1021/acsenvironau.4c00015
Christian Ayafor, Toren Burton, Nathaniel George, Gregory Morose and Hsi-Wu Wong*, 
{"title":"Safer Solvents for Active Pharmaceutical Ingredient Purification Using Column Chromatography","authors":"Christian Ayafor,&nbsp;Toren Burton,&nbsp;Nathaniel George,&nbsp;Gregory Morose and Hsi-Wu Wong*,&nbsp;","doi":"10.1021/acsenvironau.4c0001510.1021/acsenvironau.4c00015","DOIUrl":"https://doi.org/10.1021/acsenvironau.4c00015https://doi.org/10.1021/acsenvironau.4c00015","url":null,"abstract":"<p >Column chromatography is a technique widely used for the purification of active pharmaceutical ingredients (APIs). One of the common solvent systems used by this technique is blends of dichloromethane (DCM) and methanol (MeOH), thereby exposing workers to health and safety risks and making the pharmaceutical sector one of the major contributors to chlorinated solvent waste. In this work, API separation and purification using several alternative safer solvent blends in column chromatography were evaluated and compared to DCM/MeOH. Ibuprofen and acetaminophen were used as model APIs, and caffeine was used as a model additive. Overall, some of the safer solvent blends tested provided better performance, with higher API recovery and purity compared to DCM/MeOH, in addition to potential health, safety, and environmental benefits. Specifically, blends of heptane/ethyl acetate and heptane/methyl acetate showed the most promise. Our work demonstrates the potential of these safer solvent blends as possible replacements for DCM/MeOH in API purification, thereby addressing a critical safety concern in the pharmaceutical industry.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.4c00015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142237559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Drivers of Historic Mercury Trends in Beluga Whales Using an Ecosystem Modeling Approach
IF 6.7
ACS Environmental Au Pub Date : 2024-06-04 DOI: 10.1021/acsenvironau.3c0007210.1021/acsenvironau.3c00072
Emma J. Gillies*, Mi-Ling Li, Villy Christensen, Carie Hoover, Kristen J. Sora, Lisa L. Loseto, William W. L. Cheung, Hélène Angot and Amanda Giang*, 
{"title":"Exploring Drivers of Historic Mercury Trends in Beluga Whales Using an Ecosystem Modeling Approach","authors":"Emma J. Gillies*,&nbsp;Mi-Ling Li,&nbsp;Villy Christensen,&nbsp;Carie Hoover,&nbsp;Kristen J. Sora,&nbsp;Lisa L. Loseto,&nbsp;William W. L. Cheung,&nbsp;Hélène Angot and Amanda Giang*,&nbsp;","doi":"10.1021/acsenvironau.3c0007210.1021/acsenvironau.3c00072","DOIUrl":"https://doi.org/10.1021/acsenvironau.3c00072https://doi.org/10.1021/acsenvironau.3c00072","url":null,"abstract":"<p >While mercury occurs naturally in the environment, human activity has significantly disturbed its biogeochemical cycle. Inorganic mercury entering aquatic systems can be transformed into methylmercury, a strong neurotoxicant that builds up in organisms and affects ecosystem and public health. In the Arctic, top predators such as beluga whales, an ecologically and culturally significant species for many Inuit communities, can contain high concentrations of methylmercury. Historical mercury concentrations in beluga in the western Canadian Arctic’s Beaufort Sea cannot be explained by mercury emission trends alone; in addition, they could potentially be driven by climate change impacts, such as rising temperatures and sea ice melt. These changes can affect mercury bioaccumulation through different pathways, including ecological and mercury transport processes. In this study, we explore key drivers of mercury bioaccumulation in the Beaufort Sea beluga population using Ecopath with Ecosim, an ecosystem modeling approach, and scenarios of environmental change informed by Western Science and Inuvialuit Knowledge. Comparing the effect of historical sea ice cover, sea surface temperature, and freshwater discharge time series, modeling suggests that the timing of historical increases and decreases in beluga methylmercury concentrations can be better explained by the resulting changes to ecosystem productivity rather than by those to mercury inputs and that all three environmental drivers could partially explain the decrease in mercury concentrations in beluga after the mid-1990s. This work highlights the value of multiple knowledge systems and exploratory modeling methods in understanding environmental change and contaminant cycling. Future work building on this research could inform climate change adaptation efforts and inform management decisions in the region.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.3c00072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142237940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Drivers of Historic Mercury Trends in Beluga Whales Using an Ecosystem Modeling Approach 利用生态系统建模方法探索白鲸汞历史趋势的驱动因素
ACS Environmental Au Pub Date : 2024-06-04 DOI: 10.1021/acsenvironau.3c00072
Emma J. Gillies, Mi-Ling Li, Villy Christensen, Carie Hoover, Kristen J. Sora, Lisa L. Loseto, William W. L. Cheung, Hélène Angot, Amanda Giang
{"title":"Exploring Drivers of Historic Mercury Trends in Beluga Whales Using an Ecosystem Modeling Approach","authors":"Emma J. Gillies, Mi-Ling Li, Villy Christensen, Carie Hoover, Kristen J. Sora, Lisa L. Loseto, William W. L. Cheung, Hélène Angot, Amanda Giang","doi":"10.1021/acsenvironau.3c00072","DOIUrl":"https://doi.org/10.1021/acsenvironau.3c00072","url":null,"abstract":"While mercury occurs naturally in the environment, human activity has significantly disturbed its biogeochemical cycle. Inorganic mercury entering aquatic systems can be transformed into methylmercury, a strong neurotoxicant that builds up in organisms and affects ecosystem and public health. In the Arctic, top predators such as beluga whales, an ecologically and culturally significant species for many Inuit communities, can contain high concentrations of methylmercury. Historical mercury concentrations in beluga in the western Canadian Arctic’s Beaufort Sea cannot be explained by mercury emission trends alone; in addition, they could potentially be driven by climate change impacts, such as rising temperatures and sea ice melt. These changes can affect mercury bioaccumulation through different pathways, including ecological and mercury transport processes. In this study, we explore key drivers of mercury bioaccumulation in the Beaufort Sea beluga population using Ecopath with Ecosim, an ecosystem modeling approach, and scenarios of environmental change informed by Western Science and Inuvialuit Knowledge. Comparing the effect of historical sea ice cover, sea surface temperature, and freshwater discharge time series, modeling suggests that the timing of historical increases and decreases in beluga methylmercury concentrations can be better explained by the resulting changes to ecosystem productivity rather than by those to mercury inputs and that all three environmental drivers could partially explain the decrease in mercury concentrations in beluga after the mid-1990s. This work highlights the value of multiple knowledge systems and exploratory modeling methods in understanding environmental change and contaminant cycling. Future work building on this research could inform climate change adaptation efforts and inform management decisions in the region.","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信