Disentangling the Impacts of PAHs, Microplastics, and Sediment Resuspension on Algal Physiology: A Partial Least Squares Structural Equation Modeling Approach
Hoi Shing Lo*, Betty Chaumet, Alyssa Azaroff, Anna Sobek, Sofi Jonsson and Elena Gorokhova*,
{"title":"Disentangling the Impacts of PAHs, Microplastics, and Sediment Resuspension on Algal Physiology: A Partial Least Squares Structural Equation Modeling Approach","authors":"Hoi Shing Lo*, Betty Chaumet, Alyssa Azaroff, Anna Sobek, Sofi Jonsson and Elena Gorokhova*, ","doi":"10.1021/acsenvironau.5c00060","DOIUrl":null,"url":null,"abstract":"<p >Environmental stressors, such as contaminants and physical factors, rarely act in isolation, and studying their joint effects provides a more accurate reflection of real-world scenarios. To capture these interactions and disentangle the direct and indirect influences on algal responses, we applied partial least squares structural equation modeling (PLS-SEM), allowing us to reveal the hierarchical relationships among stressors and their cumulative impact on algal physiology. We examined combined effects of microplastics (MP; presence/absence), polycyclic aromatic hydrocarbons (PAHs; a mixture of acenaphthene, fluorene, phenanthrene, and fluoranthene at a total chemical activity in the sediment of 0 or 0.14), and sediment resuspension (turbidity: 0.8–3.9 NTU) on <i>Ceramium tenuicorne</i>, a coastal macroalga that is likely to encounter all these stressors in its natural habitats. Mechanical mixing at two intensities (low and high) was applied as an experimental treatment to induce resuspension. The analysis separated the effects of mechanical mixing and turbidity, given their nonlinear relationship, as stronger mechanical mixing did not consistently result in proportional turbidity increases. The algal physiological responses were evaluated using changes in pigment composition (Chl <i>a</i>, Chl <i>c</i>, and carotenoids), photosystem II (PSII) performance, total antioxidant capacity, and algal stoichiometry measured as elemental (%C, %N, %H, and C/N) ratios. We found that PAH exposure was the main suppressor of pigment concentrations and PSII performance, underscoring the mechanisms of its adverse effects on the photosynthetic machinery and nutrient assimilation. Moreover, stronger turbulence further decreased pigment concentrations, while sediment resuspension increased antioxidant capacity in algae, possibly due to physical damage from abrasion and scouring. We also found that MP addition significantly increased turbidity, thus aggravating the effects of the sediment resuspension. In conclusion, we provide a mechanistic explanation of how the combined exposure to MPs, PAHs, and sediment resuspension can impact pigment composition, photosynthesis, and stoichiometry of the algae, leading to decreased productivity.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"5 5","pages":"490–500"},"PeriodicalIF":7.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsenvironau.5c00060","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenvironau.5c00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental stressors, such as contaminants and physical factors, rarely act in isolation, and studying their joint effects provides a more accurate reflection of real-world scenarios. To capture these interactions and disentangle the direct and indirect influences on algal responses, we applied partial least squares structural equation modeling (PLS-SEM), allowing us to reveal the hierarchical relationships among stressors and their cumulative impact on algal physiology. We examined combined effects of microplastics (MP; presence/absence), polycyclic aromatic hydrocarbons (PAHs; a mixture of acenaphthene, fluorene, phenanthrene, and fluoranthene at a total chemical activity in the sediment of 0 or 0.14), and sediment resuspension (turbidity: 0.8–3.9 NTU) on Ceramium tenuicorne, a coastal macroalga that is likely to encounter all these stressors in its natural habitats. Mechanical mixing at two intensities (low and high) was applied as an experimental treatment to induce resuspension. The analysis separated the effects of mechanical mixing and turbidity, given their nonlinear relationship, as stronger mechanical mixing did not consistently result in proportional turbidity increases. The algal physiological responses were evaluated using changes in pigment composition (Chl a, Chl c, and carotenoids), photosystem II (PSII) performance, total antioxidant capacity, and algal stoichiometry measured as elemental (%C, %N, %H, and C/N) ratios. We found that PAH exposure was the main suppressor of pigment concentrations and PSII performance, underscoring the mechanisms of its adverse effects on the photosynthetic machinery and nutrient assimilation. Moreover, stronger turbulence further decreased pigment concentrations, while sediment resuspension increased antioxidant capacity in algae, possibly due to physical damage from abrasion and scouring. We also found that MP addition significantly increased turbidity, thus aggravating the effects of the sediment resuspension. In conclusion, we provide a mechanistic explanation of how the combined exposure to MPs, PAHs, and sediment resuspension can impact pigment composition, photosynthesis, and stoichiometry of the algae, leading to decreased productivity.
期刊介绍:
ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management