ACS Organic & Inorganic AuPub Date : 2024-11-16DOI: 10.1021/acsorginorgau.4c0006810.1021/acsorginorgau.4c00068
H. R. Stephen, and , J. L. Röckl*,
{"title":"The Future of Electro-organic Synthesis in Drug Discovery and Early Development","authors":"H. R. Stephen, and , J. L. Röckl*, ","doi":"10.1021/acsorginorgau.4c0006810.1021/acsorginorgau.4c00068","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00068https://doi.org/10.1021/acsorginorgau.4c00068","url":null,"abstract":"<p >Electro-organic chemistry presents a promising frontier in drug discovery and early development, facilitating novel reactivity aligned with green chemistry principles. Despite this, electrochemistry is not widely used as a synthesis and manufacturing tool in drug discovery or development. This overview seeks to identify key areas that require additional research to make synthetic electrochemistry more accessible to chemists in drug discovery and early development and provide potential solutions. This includes expanding the reaction scope, simplifying rapid scale-up, developing electrode materials, and improving knowledge transfer to aid reproducibility and increase the awareness of electrochemistry. The integration of electro-organic synthesis into drug discovery and development holds the potential to enable efficient, sustainable routes toward future medicines faster than ever.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 6","pages":"571–578 571–578"},"PeriodicalIF":3.3,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Future of Electro-organic Synthesis in Drug Discovery and Early Development.","authors":"H R Stephen, J L Röckl","doi":"10.1021/acsorginorgau.4c00068","DOIUrl":"10.1021/acsorginorgau.4c00068","url":null,"abstract":"<p><p>Electro-organic chemistry presents a promising frontier in drug discovery and early development, facilitating novel reactivity aligned with green chemistry principles. Despite this, electrochemistry is not widely used as a synthesis and manufacturing tool in drug discovery or development. This overview seeks to identify key areas that require additional research to make synthetic electrochemistry more accessible to chemists in drug discovery and early development and provide potential solutions. This includes expanding the reaction scope, simplifying rapid scale-up, developing electrode materials, and improving knowledge transfer to aid reproducibility and increase the awareness of electrochemistry. The integration of electro-organic synthesis into drug discovery and development holds the potential to enable efficient, sustainable routes toward future medicines faster than ever.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 6","pages":"571-578"},"PeriodicalIF":3.3,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Organic & Inorganic AuPub Date : 2024-11-11DOI: 10.1021/acsorginorgau.4c0006610.1021/acsorginorgau.4c00066
Andreu Tortajada, and , Eva Hevia*,
{"title":"Room-Temperature Intermolecular Hydroamination of Vinylarenes Catalyzed by Alkali-Metal Ferrate Complexes","authors":"Andreu Tortajada, and , Eva Hevia*, ","doi":"10.1021/acsorginorgau.4c0006610.1021/acsorginorgau.4c00066","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00066https://doi.org/10.1021/acsorginorgau.4c00066","url":null,"abstract":"<p >Alkene hydroamination of multiple bonds represents a valuable and atom-economical approach to accessing amines, using simple and widely available starting materials. This reaction requires a metal catalyst, and despite the success of noble transition metals, s-block, or f-block elements, iron organometallic complexes have found limited applications. Partnering iron with an alkali metal and switching on bimetallic cooperativity, we report the synthesis and characterization of a series of highly reactive alkali-metal alkyl ferrate complexes, which can deprotonate amines and activate them toward the catalytic hydroamination of vinylarenes. An alkali-metal effect has been observed, with the sodium analogue being the best for an efficient hydroamination of different styrene derivatives and amines. Stoichiometric studies on the reaction of the sodium tris(alkyl) ferrate complex with 3 mol equiv of piperidine evidenced the ability of the three alkyl groups on Fe to undergo amine metalation, furnishing a novel tris(amido) sodium ferrate which is postulated as a key intermediate in these catalytic transformations. The enhanced reactivity of these alkali-metal ferrates contrasts sharply with that of the Fe(II) bis(alkyl) precursor which is completely inert toward alkene hydroamination.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"5 1","pages":"62–68 62–68"},"PeriodicalIF":3.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143127676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Room-Temperature Intermolecular Hydroamination of Vinylarenes Catalyzed by Alkali-Metal Ferrate Complexes.","authors":"Andreu Tortajada, Eva Hevia","doi":"10.1021/acsorginorgau.4c00066","DOIUrl":"10.1021/acsorginorgau.4c00066","url":null,"abstract":"<p><p>Alkene hydroamination of multiple bonds represents a valuable and atom-economical approach to accessing amines, using simple and widely available starting materials. This reaction requires a metal catalyst, and despite the success of noble transition metals, s-block, or f-block elements, iron organometallic complexes have found limited applications. Partnering iron with an alkali metal and switching on bimetallic cooperativity, we report the synthesis and characterization of a series of highly reactive alkali-metal alkyl ferrate complexes, which can deprotonate amines and activate them toward the catalytic hydroamination of vinylarenes. An alkali-metal effect has been observed, with the sodium analogue being the best for an efficient hydroamination of different styrene derivatives and amines. Stoichiometric studies on the reaction of the sodium tris(alkyl) ferrate complex with 3 mol equiv of piperidine evidenced the ability of the three alkyl groups on Fe to undergo amine metalation, furnishing a novel tris(amido) sodium ferrate which is postulated as a key intermediate in these catalytic transformations. The enhanced reactivity of these alkali-metal ferrates contrasts sharply with that of the Fe(II) bis(alkyl) precursor which is completely inert toward alkene hydroamination.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"5 1","pages":"62-68"},"PeriodicalIF":3.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applications of Antimony in Catalysis.","authors":"Lewen Wu, Choon-Hong Tan, Xinyi Ye","doi":"10.1021/acsorginorgau.4c00072","DOIUrl":"10.1021/acsorginorgau.4c00072","url":null,"abstract":"<p><p>Antimony is a fifth-period element in the nitrogen family, a silver-white metalloid with weak conductivity and thermal conductivity. It is stable at room temperature and does not react easily with oxygen and water in the air. Natural minerals are found in the form of sulfides. Current research and applications are mostly concentrated on material modification, utilizing the properties of antimony in traditional chemical industries, helping alloys improve their flame retardancy, stability, increasing semiconductor performance, etc. For example, to enhance the electronic conductivity, after coating or embedding antimony or its derivatives in thin layers in photonic nanomaterials, the performance of the original material in photoelectrochemical catalysis can be effectively increased, thereby expanding the efficiency of oxidation-reduction reactions accounting for the degradation of organic matter in wastewater. However, the catalytic reaction between the derivatives of antimony and organic compounds beside the material is less studied, and the mechanism of the studies in organic synthesis is relatively unclear. The reported organic synthesis related to antimony is mainly in the form of Lewis acid catalysts or dual-metal catalytic systems combined with other metals. This Review will focus on the application of antimony in photocatalysis, electrocatalysis, and other organic syntheses in the past 10 years.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"5 1","pages":"13-25"},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11803468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Organic & Inorganic AuPub Date : 2024-11-06DOI: 10.1021/acsorginorgau.4c0007210.1021/acsorginorgau.4c00072
Lewen Wu, Choon-Hong Tan* and Xinyi Ye*,
{"title":"Applications of Antimony in Catalysis","authors":"Lewen Wu, Choon-Hong Tan* and Xinyi Ye*, ","doi":"10.1021/acsorginorgau.4c0007210.1021/acsorginorgau.4c00072","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00072https://doi.org/10.1021/acsorginorgau.4c00072","url":null,"abstract":"<p >Antimony is a fifth-period element in the nitrogen family, a silver-white metalloid with weak conductivity and thermal conductivity. It is stable at room temperature and does not react easily with oxygen and water in the air. Natural minerals are found in the form of sulfides. Current research and applications are mostly concentrated on material modification, utilizing the properties of antimony in traditional chemical industries, helping alloys improve their flame retardancy, stability, increasing semiconductor performance, etc. For example, to enhance the electronic conductivity, after coating or embedding antimony or its derivatives in thin layers in photonic nanomaterials, the performance of the original material in photoelectrochemical catalysis can be effectively increased, thereby expanding the efficiency of oxidation–reduction reactions accounting for the degradation of organic matter in wastewater. However, the catalytic reaction between the derivatives of antimony and organic compounds beside the material is less studied, and the mechanism of the studies in organic synthesis is relatively unclear. The reported organic synthesis related to antimony is mainly in the form of Lewis acid catalysts or dual-metal catalytic systems combined with other metals. This Review will focus on the application of antimony in photocatalysis, electrocatalysis, and other organic syntheses in the past 10 years.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"5 1","pages":"13–25 13–25"},"PeriodicalIF":3.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143127468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao-Chun Wei, Erick Lawrence, Alyssa Tran, Huiwen Ji
{"title":"Crystal Chemistry and Design Principles of Altermagnets.","authors":"Chao-Chun Wei, Erick Lawrence, Alyssa Tran, Huiwen Ji","doi":"10.1021/acsorginorgau.4c00064","DOIUrl":"10.1021/acsorginorgau.4c00064","url":null,"abstract":"<p><p>Altermagnetism was very recently identified as a new type of magnetic phase beyond the conventional dichotomy of ferromagnetism (FM) and antiferromagnetism (AFM). Its globally compensated magnetization and directional spin polarization promise new properties such as spin-polarized conductivity, spin-transfer torque, anomalous Hall effect, tunneling, and giant magnetoresistance that are highly useful for the next-generation memory devices, magnetic detectors, and energy conversion. Though this area has been historically led by the thin-film community, the identification of altermagnetism ultimately relies on precise magnetic structure determination, which can be most efficiently done in bulk materials. Our review, written from a materials chemistry perspective, intends to encourage materials and solid-state chemists to make contributions to this emerging topic through new materials discovery by leveraging neutron diffraction to determine the magnetic structures as well as bulk crystal growth for exploring exotic properties. We first review the symmetric classification for the identification of altermagnets with a summary of chemical principles and design rules, followed by a discussion of the unique physical properties in relation to crystal and magnetic structural symmetry. Several major families of compounds in which altermagnets have been identified are then reviewed. We conclude by giving an outlook for future directions.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 6","pages":"604-619"},"PeriodicalIF":3.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Organic & Inorganic AuPub Date : 2024-10-23DOI: 10.1021/acsorginorgau.4c0006410.1021/acsorginorgau.4c00064
Chao-Chun Wei, Erick Lawrence, Alyssa Tran and Huiwen Ji*,
{"title":"Crystal Chemistry and Design Principles of Altermagnets","authors":"Chao-Chun Wei, Erick Lawrence, Alyssa Tran and Huiwen Ji*, ","doi":"10.1021/acsorginorgau.4c0006410.1021/acsorginorgau.4c00064","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00064https://doi.org/10.1021/acsorginorgau.4c00064","url":null,"abstract":"<p >Altermagnetism was very recently identified as a new type of magnetic phase beyond the conventional dichotomy of ferromagnetism (FM) and antiferromagnetism (AFM). Its globally compensated magnetization and directional spin polarization promise new properties such as spin-polarized conductivity, spin-transfer torque, anomalous Hall effect, tunneling, and giant magnetoresistance that are highly useful for the next-generation memory devices, magnetic detectors, and energy conversion. Though this area has been historically led by the thin-film community, the identification of altermagnetism ultimately relies on precise magnetic structure determination, which can be most efficiently done in bulk materials. Our review, written from a materials chemistry perspective, intends to encourage materials and solid-state chemists to make contributions to this emerging topic through new materials discovery by leveraging neutron diffraction to determine the magnetic structures as well as bulk crystal growth for exploring exotic properties. We first review the symmetric classification for the identification of altermagnets with a summary of chemical principles and design rules, followed by a discussion of the unique physical properties in relation to crystal and magnetic structural symmetry. Several major families of compounds in which altermagnets have been identified are then reviewed. We conclude by giving an outlook for future directions.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 6","pages":"604–619 604–619"},"PeriodicalIF":3.3,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Organic & Inorganic AuPub Date : 2024-10-20DOI: 10.1021/acsorginorgau.4c0005110.1021/acsorginorgau.4c00051
Pornwimon Kongkiatkrai, Thana Anusanti and Teera Chantarojsiri*,
{"title":"Repurposing First-Row Transition Metal Carbon Dioxide Reduction Electrocatalysts for Electrochemical Carboxylation of Benzyl Chloride","authors":"Pornwimon Kongkiatkrai, Thana Anusanti and Teera Chantarojsiri*, ","doi":"10.1021/acsorginorgau.4c0005110.1021/acsorginorgau.4c00051","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00051https://doi.org/10.1021/acsorginorgau.4c00051","url":null,"abstract":"<p >Carbon dioxide (CO<sub>2</sub>) is an abundant and useful C<sub>1</sub> feedstock for electrocarboxylation, a process that incorporates a carboxyl moiety into an organic molecule. In this work, three first-row transition metal CO<sub>2</sub> reduction electrocatalysts, NiPDI<sup>iPr</sup> (<b>1</b>), NiTPA (<b>2</b>), and Fe(salenCl<sub>4</sub>) (<b>3</b>), were explored as electrocarboxylation catalysts with benzyl chloride as a substrate. The cyclic voltammograms of all three catalysts showed current enhancements in the presence of benzyl chloride under a CO<sub>2</sub> atmosphere. Introduction of DMAP as additives showed further current enhancement. Electrolyses with one-compartment cell generated a moderate yield of phenylacetic acid. Addition of MgBr<sub>2</sub> was proven to be crucial to the formation of the carboxylate product. While the yield of carboxylation was moderate, this work showed an example of electrocarboxylation of benzyl chloride without using a metal electrode or sacrificial anode, which could lead to a more sustainable carboxylation methodology.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 6","pages":"620–627 620–627"},"PeriodicalIF":3.3,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Repurposing First-Row Transition Metal Carbon Dioxide Reduction Electrocatalysts for Electrochemical Carboxylation of Benzyl Chloride.","authors":"Pornwimon Kongkiatkrai, Thana Anusanti, Teera Chantarojsiri","doi":"10.1021/acsorginorgau.4c00051","DOIUrl":"10.1021/acsorginorgau.4c00051","url":null,"abstract":"<p><p>Carbon dioxide (CO<sub>2</sub>) is an abundant and useful C<sub>1</sub> feedstock for electrocarboxylation, a process that incorporates a carboxyl moiety into an organic molecule. In this work, three first-row transition metal CO<sub>2</sub> reduction electrocatalysts, NiPDI<sup>iPr</sup> (<b>1</b>), NiTPA (<b>2</b>), and Fe(salenCl<sub>4</sub>) (<b>3</b>), were explored as electrocarboxylation catalysts with benzyl chloride as a substrate. The cyclic voltammograms of all three catalysts showed current enhancements in the presence of benzyl chloride under a CO<sub>2</sub> atmosphere. Introduction of DMAP as additives showed further current enhancement. Electrolyses with one-compartment cell generated a moderate yield of phenylacetic acid. Addition of MgBr<sub>2</sub> was proven to be crucial to the formation of the carboxylate product. While the yield of carboxylation was moderate, this work showed an example of electrocarboxylation of benzyl chloride without using a metal electrode or sacrificial anode, which could lead to a more sustainable carboxylation methodology.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 6","pages":"620-627"},"PeriodicalIF":3.3,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}