Environment & HealthPub Date : 2024-09-26eCollection Date: 2025-01-17DOI: 10.1021/envhealth.4c00122
Hong Cheng, Shengchun Wang, Jiyuan Shao, Huiyu Gao, Ying Wang, Furong Deng, Hui Du, Jingyi Liu, Xia Du, Xin Zhang
{"title":"Associations of Ozone Exposure with Serum Biomarkers in Acute Myocardial Infarction Patients in Taiyuan, China: The Mediating Role of Metabolites.","authors":"Hong Cheng, Shengchun Wang, Jiyuan Shao, Huiyu Gao, Ying Wang, Furong Deng, Hui Du, Jingyi Liu, Xia Du, Xin Zhang","doi":"10.1021/envhealth.4c00122","DOIUrl":"10.1021/envhealth.4c00122","url":null,"abstract":"<p><p>Abundant epidemiological studies have conclusively demonstrated the effects of short-term ozone (O<sub>3</sub>) exposure on the incidence and mortality of cardiovascular diseases. However, the mechanism of its influence remains unverified. This study aimed to assess the impact of O<sub>3</sub> on metabolomic-based biomarkers in acute myocardial infarction (AMI) patients. Accurate biomarkers for AMI were identified by combining serum biomarkers with metabolomics. A total of 137 volunteers were recruited, including 79 AMI patients and 58 healthy participants, from March to April 2023 in Taiyuan, China. Linear regression models were applied to analyze the associations of serum biomarkers and metabolites with O<sub>3</sub>. Mediation analyses were also conducted to assess the impact of metabolites, acting as mediators, on the associations between O<sub>3</sub> and biomarkers. We found that O<sub>3</sub> at lag2 captured the most remarkable effects. Metabolomic analysis revealed a substantial association between O<sub>3</sub> (lag2) and 43 metabolites. Pathway analysis revealed that these metabolites primarily participate in the tricarboxylic acid cycle, arginine biosynthesis, and histidine metabolism. These findings suggest that O<sub>3</sub> is an important factor in examining the metabolic mechanisms of cardiovascular disease, highlighting the importance of mitigating O<sub>3</sub> to further protect AMI patients.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"3 1","pages":"79-90"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environment & HealthPub Date : 2024-09-26DOI: 10.1021/envhealth.4c0012210.1021/envhealth.4c00122
Hong Cheng, Shengchun Wang, Jiyuan Shao, Huiyu Gao, Ying Wang, Furong Deng, Hui Du, Jingyi Liu, Xia Du* and Xin Zhang*,
{"title":"Associations of Ozone Exposure with Serum Biomarkers in Acute Myocardial Infarction Patients in Taiyuan, China: The Mediating Role of Metabolites","authors":"Hong Cheng, Shengchun Wang, Jiyuan Shao, Huiyu Gao, Ying Wang, Furong Deng, Hui Du, Jingyi Liu, Xia Du* and Xin Zhang*, ","doi":"10.1021/envhealth.4c0012210.1021/envhealth.4c00122","DOIUrl":"https://doi.org/10.1021/envhealth.4c00122https://doi.org/10.1021/envhealth.4c00122","url":null,"abstract":"<p >Abundant epidemiological studies have conclusively demonstrated the effects of short-term ozone (O<sub>3</sub>) exposure on the incidence and mortality of cardiovascular diseases. However, the mechanism of its influence remains unverified. This study aimed to assess the impact of O<sub>3</sub> on metabolomic-based biomarkers in acute myocardial infarction (AMI) patients. Accurate biomarkers for AMI were identified by combining serum biomarkers with metabolomics. A total of 137 volunteers were recruited, including 79 AMI patients and 58 healthy participants, from March to April 2023 in Taiyuan, China. Linear regression models were applied to analyze the associations of serum biomarkers and metabolites with O<sub>3</sub>. Mediation analyses were also conducted to assess the impact of metabolites, acting as mediators, on the associations between O<sub>3</sub> and biomarkers. We found that O<sub>3</sub> at lag2 captured the most remarkable effects. Metabolomic analysis revealed a substantial association between O<sub>3</sub> (lag2) and 43 metabolites. Pathway analysis revealed that these metabolites primarily participate in the tricarboxylic acid cycle, arginine biosynthesis, and histidine metabolism. These findings suggest that O<sub>3</sub> is an important factor in examining the metabolic mechanisms of cardiovascular disease, highlighting the importance of mitigating O<sub>3</sub> to further protect AMI patients.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"3 1","pages":"79–90 79–90"},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/envhealth.4c00122","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143091757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environment & HealthPub Date : 2024-09-20DOI: 10.1021/envhealth.4c0011810.1021/envhealth.4c00118
James Y. Liu, Joshua Peeples and Christie M. Sayes*,
{"title":"Evaluation of Machine Learning Based QSAR Models for the Classification of Lung Surfactant Inhibitors","authors":"James Y. Liu, Joshua Peeples and Christie M. Sayes*, ","doi":"10.1021/envhealth.4c0011810.1021/envhealth.4c00118","DOIUrl":"https://doi.org/10.1021/envhealth.4c00118https://doi.org/10.1021/envhealth.4c00118","url":null,"abstract":"<p >Inhaled chemicals can cause dysfunction in the lung surfactant, a protein–lipid complex with critical biophysical and biochemical functions. This inhibition has many structure-related and dose-dependent mechanisms, making hazard identification challenging. We developed quantitative structure–activity relationships for predicting lung surfactant inhibition using machine learning. Logistic regression, support vector machines, random forest, gradient-boosted trees, prior-data-fitted networks, and multilayer perceptron were evaluated as methods. Multilayer perceptron had the strongest performance with 96% accuracy and an F1 score of 0.97. Support vector machines and logistic regression also performed well with lower computation costs. This serves as a proof-of-concept for efficient hazard screening in the emerging area of lung surfactant inhibition.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"2 12","pages":"912–917 912–917"},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/envhealth.4c00118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environment & HealthPub Date : 2024-09-20eCollection Date: 2025-01-17DOI: 10.1021/envhealth.4c00138
Maura Purcell, Jesse DuPont, Anil Somenahally, Javid F McLawrence, Cara L Case, Prasanna Gowda, Nevada King, Monte Jr Rouquette, Ri-Qing Yu
{"title":"Long-Term Grazing and Nitrogen Management Impacted Methane Emission Potential and Soil Microbial Community in Grazing Pastures.","authors":"Maura Purcell, Jesse DuPont, Anil Somenahally, Javid F McLawrence, Cara L Case, Prasanna Gowda, Nevada King, Monte Jr Rouquette, Ri-Qing Yu","doi":"10.1021/envhealth.4c00138","DOIUrl":"10.1021/envhealth.4c00138","url":null,"abstract":"<p><p>Achieving sustainable development in livestock agriculture by balancing livestock production, reduction of greenhouse gas (GHG) emissions, and effective utilization of nitrogen nutrient has indeed been challenging. This study investigated the long-term effects of continuous cattle grazing, stocking rates, and fertilization regimens on methane (CH<sub>4</sub>) emissions, soil microbial communities, and soil organic carbon (SOC) stocks in Bermudagrass pastures in East Texas, USA. Pastures were subjected to high or low stocking rates for over 50 years, with further subdivision based on fertilization: nitrogen-based fertilizer application or no fertilizer but with the growth of annual clover. Seasonal soil cores (0-60 cm) were collected, and laboratory microcosm incubation studies revealed unexpectedly high <i>in vitro</i> CH<sub>4</sub> emissions in surface soils, particularly in the top 0-5 cm soil layer, reaching up to 300 nmol of CH<sub>4</sub> mL<sup>-1</sup>. Higher CH<sub>4</sub> emissions and methanogen abundance, along with lower SOC stocks, were observed in pastures subjected to high stocking rates compared to those with low stocking rates and in clover pastures compared to those with N-fertilized ryegrass. On the contrary, in low-stocked, N-fertilized annual ryegrass pastures, methanogen abundance was lowest, CH<sub>4</sub> emissions were negligible, and SOC stocks were highest. Furthermore, animal excreta deposition significantly contributed to increased CH<sub>4</sub> emissions. Prokaryotic and potential methanotrophic taxa, as compared to fungi, exhibited greater responsiveness to N-fertilization than to cattle stocking treatments with higher levels of methanotrophs observed in pastures subjected to high stocking rates and clover growth. This study suggests that strategic management practices such as optimal grazing and nitrogen management could effectively mitigate CH<sub>4</sub> emissions in grazing lands.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"3 1","pages":"68-78"},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744396/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environment & HealthPub Date : 2024-09-20eCollection Date: 2024-12-20DOI: 10.1021/envhealth.4c00118
James Y Liu, Joshua Peeples, Christie M Sayes
{"title":"Evaluation of Machine Learning Based QSAR Models for the Classification of Lung Surfactant Inhibitors.","authors":"James Y Liu, Joshua Peeples, Christie M Sayes","doi":"10.1021/envhealth.4c00118","DOIUrl":"10.1021/envhealth.4c00118","url":null,"abstract":"<p><p>Inhaled chemicals can cause dysfunction in the lung surfactant, a protein-lipid complex with critical biophysical and biochemical functions. This inhibition has many structure-related and dose-dependent mechanisms, making hazard identification challenging. We developed quantitative structure-activity relationships for predicting lung surfactant inhibition using machine learning. Logistic regression, support vector machines, random forest, gradient-boosted trees, prior-data-fitted networks, and multilayer perceptron were evaluated as methods. Multilayer perceptron had the strongest performance with 96% accuracy and an F1 score of 0.97. Support vector machines and logistic regression also performed well with lower computation costs. This serves as a proof-of-concept for efficient hazard screening in the emerging area of lung surfactant inhibition.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"2 12","pages":"912-917"},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environment & HealthPub Date : 2024-09-20DOI: 10.1021/envhealth.4c0013810.1021/envhealth.4c00138
Maura Purcell, Jesse DuPont, Anil Somenahally*, Javid F. McLawrence, Cara L. Case, Prasanna Gowda, Nevada King, Monte Jr. Rouquette and Ri-Qing Yu*,
{"title":"Long-Term Grazing and Nitrogen Management Impacted Methane Emission Potential and Soil Microbial Community in Grazing Pastures","authors":"Maura Purcell, Jesse DuPont, Anil Somenahally*, Javid F. McLawrence, Cara L. Case, Prasanna Gowda, Nevada King, Monte Jr. Rouquette and Ri-Qing Yu*, ","doi":"10.1021/envhealth.4c0013810.1021/envhealth.4c00138","DOIUrl":"https://doi.org/10.1021/envhealth.4c00138https://doi.org/10.1021/envhealth.4c00138","url":null,"abstract":"<p >Achieving sustainable development in livestock agriculture by balancing livestock production, reduction of greenhouse gas (GHG) emissions, and effective utilization of nitrogen nutrient has indeed been challenging. This study investigated the long-term effects of continuous cattle grazing, stocking rates, and fertilization regimens on methane (CH<sub>4</sub>) emissions, soil microbial communities, and soil organic carbon (SOC) stocks in Bermudagrass pastures in East Texas, USA. Pastures were subjected to high or low stocking rates for over 50 years, with further subdivision based on fertilization: nitrogen-based fertilizer application or no fertilizer but with the growth of annual clover. Seasonal soil cores (0–60 cm) were collected, and laboratory microcosm incubation studies revealed unexpectedly high <i>in vitro</i> CH<sub>4</sub> emissions in surface soils, particularly in the top 0–5 cm soil layer, reaching up to 300 nmol of CH<sub>4</sub> mL<sup>–1</sup>. Higher CH<sub>4</sub> emissions and methanogen abundance, along with lower SOC stocks, were observed in pastures subjected to high stocking rates compared to those with low stocking rates and in clover pastures compared to those with N-fertilized ryegrass. On the contrary, in low-stocked, N-fertilized annual ryegrass pastures, methanogen abundance was lowest, CH<sub>4</sub> emissions were negligible, and SOC stocks were highest. Furthermore, animal excreta deposition significantly contributed to increased CH<sub>4</sub> emissions. Prokaryotic and potential methanotrophic taxa, as compared to fungi, exhibited greater responsiveness to N-fertilization than to cattle stocking treatments with higher levels of methanotrophs observed in pastures subjected to high stocking rates and clover growth. This study suggests that strategic management practices such as optimal grazing and nitrogen management could effectively mitigate CH<sub>4</sub> emissions in grazing lands.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"3 1","pages":"68–78 68–78"},"PeriodicalIF":0.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/envhealth.4c00138","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143091797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical Investigation of Cytochrome P450 Enzyme-Mediated Biotransformation Mechanism of BHPF: Unveiling the Metabolic Safety Aspects of an Alternative to BPA.","authors":"Wenxiao Pan, Shuming He, Yinzheng Yang, Yongdie Yang, Qiao Xue, Xian Liu, Jianjie Fu, Aiqian Zhang","doi":"10.1021/envhealth.4c00132","DOIUrl":"10.1021/envhealth.4c00132","url":null,"abstract":"<p><p>Fluorene-9-bisphenol (BHPF), emerging as an alternative to bisphenol A (BPA), is extensively utilized in industry and consumer goods. BHPF exhibits antiestrogenic effects and potential reproductive toxicity. Similar to BPA, BHPF can closely access the active site of the cytochrome P450 (CYP450) enzyme, interact with the Fe=O moiety, and potentially initiate metabolic reactions. Using density functional theory (DFT) calculations, we explored the mechanisms underlying BHPF activation using a CYP450 compound I (Cpd I) model, identifying several plausible products. Compared with the higher energy barriers associated with phenyl ring addition reactions, the formation of a phenoxyl-type radical through phenolic hydrogen atom abstraction, followed by OH rebound or radical coupling, represents an energetically favorable pathway. The OH rebound process yields three primary products: 9-(3,4-dihydroxyphenyl)-9-(4-hydroxyphenyl)fluorene (PRD1), semiquinone radical anion (PRD2), and 9-(4-hydroxyphenyl)fluorene carbocation (PRD3), constituting the major outcomes of the BHPF metabolic reaction. Importantly, a lipophilic ether metabolite, BHPF-O-BHPF (PRD4), formed through the coupling of phenoxyl radicals, reflects a widespread metabolic pathway observed in phenolic molecules. Despite constituting a minor proportion, the toxicity of this product necessitates increased attention. These findings contribute significantly to an enhanced understanding of the potential hazards associated with BHPF and other unknown chemical entities.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"3 2","pages":"133-142"},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143516477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environment & HealthPub Date : 2024-09-17DOI: 10.1021/envhealth.4c0013210.1021/envhealth.4c00132
Wenxiao Pan, Shuming He, Yinzheng Yang, Yongdie Yang, Qiao Xue*, Xian Liu, Jianjie Fu and Aiqian Zhang*,
{"title":"Theoretical Investigation of Cytochrome P450 Enzyme-Mediated Biotransformation Mechanism of BHPF: Unveiling the Metabolic Safety Aspects of an Alternative to BPA","authors":"Wenxiao Pan, Shuming He, Yinzheng Yang, Yongdie Yang, Qiao Xue*, Xian Liu, Jianjie Fu and Aiqian Zhang*, ","doi":"10.1021/envhealth.4c0013210.1021/envhealth.4c00132","DOIUrl":"https://doi.org/10.1021/envhealth.4c00132https://doi.org/10.1021/envhealth.4c00132","url":null,"abstract":"<p >Fluorene-9-bisphenol (BHPF), emerging as an alternative to bisphenol A (BPA), is extensively utilized in industry and consumer goods. BHPF exhibits antiestrogenic effects and potential reproductive toxicity. Similar to BPA, BHPF can closely access the active site of the cytochrome P450 (CYP450) enzyme, interact with the Fe═O moiety, and potentially initiate metabolic reactions. Using density functional theory (DFT) calculations, we explored the mechanisms underlying BHPF activation using a CYP450 compound I (Cpd I) model, identifying several plausible products. Compared with the higher energy barriers associated with phenyl ring addition reactions, the formation of a phenoxyl-type radical through phenolic hydrogen atom abstraction, followed by OH rebound or radical coupling, represents an energetically favorable pathway. The OH rebound process yields three primary products: 9-(3,4-dihydroxyphenyl)-9-(4-hydroxyphenyl)fluorene (PRD1), semiquinone radical anion (PRD2), and 9-(4-hydroxyphenyl)fluorene carbocation (PRD3), constituting the major outcomes of the BHPF metabolic reaction. Importantly, a lipophilic ether metabolite, BHPF-O-BHPF (PRD4), formed through the coupling of phenoxyl radicals, reflects a widespread metabolic pathway observed in phenolic molecules. Despite constituting a minor proportion, the toxicity of this product necessitates increased attention. These findings contribute significantly to an enhanced understanding of the potential hazards associated with BHPF and other unknown chemical entities.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"3 2","pages":"133–142 133–142"},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/envhealth.4c00132","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143452630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environment & HealthPub Date : 2024-09-17eCollection Date: 2024-12-20DOI: 10.1021/envhealth.4c00156
Chunyu Guo, Becky P Y Loo, Kuishuang Feng, H Oliver Gao, Kai Zhang
{"title":"Fifteen Pathways between Electric Vehicles and Public Health: A Transportation-Health Conceptual Framework.","authors":"Chunyu Guo, Becky P Y Loo, Kuishuang Feng, H Oliver Gao, Kai Zhang","doi":"10.1021/envhealth.4c00156","DOIUrl":"10.1021/envhealth.4c00156","url":null,"abstract":"<p><p>The health impact of electric vehicles (EVs) is complex and multifaceted, encompassing reductions in air pollutants, improvements in road safety, and implications for social equity. However, existing studies often provide fragmented insights, lacking a unified framework to comprehensively assess these public health implications. This paper develops a comprehensive framework to summarize the health outcomes of EVs in urban areas, where the health impacts are more pronounced due to higher levels of traffic congestion and air pollution. Building on previous conceptual work that identified pathways linking general transportation and health, our model illustrates how the characteristics of EVs influence public health through various pathways compared to traditional transportation systems. Additionally, we address socioeconomic factors that introduce variability in EV-related health outcomes, emphasizing the need to consider potential health disparities in policy and intervention development. This comprehensive approach aims to inform holistic policies that account for the complex interplay between transportation, environment, and public health.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"2 12","pages":"848-853"},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667283/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Environment & HealthPub Date : 2024-09-16DOI: 10.1021/envhealth.4c0015610.1021/envhealth.4c00156
Chunyu Guo, Becky P. Y. Loo, Kuishuang Feng, H. Oliver Gao and Kai Zhang*,
{"title":"Fifteen Pathways between Electric Vehicles and Public Health: A Transportation–Health Conceptual Framework","authors":"Chunyu Guo, Becky P. Y. Loo, Kuishuang Feng, H. Oliver Gao and Kai Zhang*, ","doi":"10.1021/envhealth.4c0015610.1021/envhealth.4c00156","DOIUrl":"https://doi.org/10.1021/envhealth.4c00156https://doi.org/10.1021/envhealth.4c00156","url":null,"abstract":"<p >The health impact of electric vehicles (EVs) is complex and multifaceted, encompassing reductions in air pollutants, improvements in road safety, and implications for social equity. However, existing studies often provide fragmented insights, lacking a unified framework to comprehensively assess these public health implications. This paper develops a comprehensive framework to summarize the health outcomes of EVs in urban areas, where the health impacts are more pronounced due to higher levels of traffic congestion and air pollution. Building on previous conceptual work that identified pathways linking general transportation and health, our model illustrates how the characteristics of EVs influence public health through various pathways compared to traditional transportation systems. Additionally, we address socioeconomic factors that introduce variability in EV-related health outcomes, emphasizing the need to consider potential health disparities in policy and intervention development. This comprehensive approach aims to inform holistic policies that account for the complex interplay between transportation, environment, and public health.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"2 12","pages":"848–853 848–853"},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/envhealth.4c00156","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}