A. Rauf, Hailong Li, Safi Ullah, L. Meng, Bin Wang, Maoyan Wang
{"title":"Role of high energy precipitating particles on PMSE echoes during the simultaneous observations carried out by EISCAT VHF and UHF radar","authors":"A. Rauf, Hailong Li, Safi Ullah, L. Meng, Bin Wang, Maoyan Wang","doi":"10.1109/ISAPE.2018.8634250","DOIUrl":"https://doi.org/10.1109/ISAPE.2018.8634250","url":null,"abstract":"We investigate the role of precipitating energetic particles in producing PMSE echoes during the simultaneous observations conducted simultaneously by both the EISCAT VHF and UHF radars on 8 and 9 Aug 2015. Since PMSE echoes are observed even in the absence of particle precipitation in case of EISCAT VHF observations, precipitating energetic particles might be one possible reason but are not necessary for producing PMSE echoes. However, the absence of PMSE echoes during the precipitating particle precipitation in case of observations carried out simultaneously by EISCAT UHF radar shows that particle precipitation might play an important role in PMSE creation at lower frequencies.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125375445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Method for PD Measurement Using the Equipment Shell Slot as Sensing Antenna","authors":"Chong Sun, Hongfu Guo, W. Hao","doi":"10.1109/ISAPE.2018.8634098","DOIUrl":"https://doi.org/10.1109/ISAPE.2018.8634098","url":null,"abstract":"Most of the existing high-voltage electrical equipment in operation uses external or internal Ultra High Frequency (UHF) detection sensors when detecting partial discharge (PD) signals, which brings difficulties to the already operating equipment. Based on the basic theory of slot antenna and the equipment shell itself, a novel method for PD detection is proposed in this paper: use the existing slots of the equipment shell as sensing antenna for PD measurement. In this paper, simulation models are built by the electromagnetic simulation software Ansoft HFSS to study the characteristics of shell slots as sensing antennas. The Laboratory simulations are also conducted. The research shows that the shell slot can be used as an antenna to receive the electromagnetic wave of PD inside the equipment and receive PD signals of different frequency ranges based on different sizes of the shell slot, which greatly reduces the difficulty of on-line PD detection. The conclusion of this study subverts the conventional design of UHF PD sensor and provides an important guiding direction and theoretical basis for improving the sensor design of UHF detection system.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122669036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Han Zhang, W. Yin, Xiaojun Meng, Z. Zhao, H. Zhou, Y. Liao
{"title":"Fast Simulation of Multilayered Anisotropic Carbon Fiber Composite Thin Layers Using the Embedded Thin Layer Model and Improved FDTD Suitable for High Performance Computing","authors":"Han Zhang, W. Yin, Xiaojun Meng, Z. Zhao, H. Zhou, Y. Liao","doi":"10.1109/ISAPE.2018.8634305","DOIUrl":"https://doi.org/10.1109/ISAPE.2018.8634305","url":null,"abstract":"Shielding effectiveness (SE) of multilayered anisotropic carbon fiber composite (CFC) thin layers is investigated by using an embedded thin layer model based on the extended subgridding boundary condition (SGBC) technique in the improved finite-difference time domain (FDTD) schemes for high performance computing (HPC). The developed algorithm is validated by comparing the simulated results with those from the commercial software. The SE of an enclosure with multilayered anisotropic CFC skin is analyzed by the proposed method, which is often required for the design of various space platforms.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128176859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lei Li, Shou-tian Zhao, C. Han, Xiaoxia Lu, Mingming Chai, Jiawei Wang
{"title":"The Particles Releasing Process Using Injections for the Exploration of Active Space Experiment","authors":"Lei Li, Shou-tian Zhao, C. Han, Xiaoxia Lu, Mingming Chai, Jiawei Wang","doi":"10.1109/ISAPE.2018.8634350","DOIUrl":"https://doi.org/10.1109/ISAPE.2018.8634350","url":null,"abstract":"The techniques of Active Space Experiments (ASE) include the particles injection and electromagnetic beams emission into geospace from ground or space. Based on the mechanism of the interaction between dusty particles and plasmas in ionosphere, this paper analyses the effect of particle shape on the charge effects of plasma. The processes of superfine particles injection and particle clouds formation are also discussed. This paper presents some results from theoretical analysis, experimental results and numerical simulations. The results show that the well-organized local space structure of nanoscale slender particles cloud display scattering effect to electromagnetic waves along with stronger electron adsorption capacity. The results also show that the nanoscale particles behave the shorter relaxation time than the microscale particles and in mesosphere a particles cloud of 800 meter scale can be produced using the injections method.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129246527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SAL imaging method based on Kirchhoff approximation","authors":"Chenglin Han, Yanhui Li, Zhensen Wu","doi":"10.1109/ISAPE.2018.8634143","DOIUrl":"https://doi.org/10.1109/ISAPE.2018.8634143","url":null,"abstract":"Synthenic aperture lidar(SAL) has been widely used for Its high-precision image of remote targets. In order to study the influence of different shapes and different roughness targets on SAL image in Thz band, the SAL images of different with different roughness are numerically simulated in this paper. Rough surface is generated by monte-calro method, and rough object modeling by rough surface. By using Kirchhoff approximation(KA) the back-scattering filed of a rough object is obtained, and the SAL image of a rough object is obtained by the backscattering filed at different azimuth angles and frequencies. In this paper, the SAL image of simple plate target, circular and complex target are simulated, the result of SAL image show that the image can reflect not only the shape of the target but also the roughness of the target, it is specifically analyzed in this paper. During the imaging, different frequency-domain width, frequency-domin sampling accuracy and angular sampling accuracy will affect the SAL image. The wider frequency-domin width, the higher the accuracy, the better the imaging result, but only need to meet the requirements within a reasonable range, this paper analyzed that.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129486607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on method of extraction elevation angle from backscatter ionogram","authors":"Caicheng Hua, Shikai Wang, Chengfeng Zhang","doi":"10.1109/ISAPE.2018.8634047","DOIUrl":"https://doi.org/10.1109/ISAPE.2018.8634047","url":null,"abstract":"Using the short-wave two-dimensional antenna array, the high-frequency (3MHz∼30MHz) backscatter sweep-elevation ionogram is obtained for the first time in China. Combining genetic algorithm and Otsu method, the signal region is extracted from the group path-frequency-energy three-dimensional ionogram, and the discrete point noise is eliminated by the connected domain labeling method. The Canny operator is used to obtain the nearest and farthest group path of the echo signal distribution corresponding to each frequency. On the group path-frequency-elevation three-dimensional ionogram, the elevation angle-group path distribution data of the corresponding frequency is acquired to obtain the elevation angle-group path point. The points are fitted by linear curve fitting, logarithmic fitting of the elevation angle, and logarithmic fitting of the group path. Finally, the error analysis of the fitted curve is carried out by the ionospheric data of the Qingdao Station. The results show that the curve obtained by logarithm fitting the group distance is in good agreement with the target curve.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131078341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongli Wang, Yaoyao Wang, J. Shan, Liang Zhu, Wendong Ma
{"title":"The Effect of Discharge Gap on Microwave Discharge","authors":"Zhongli Wang, Yaoyao Wang, J. Shan, Liang Zhu, Wendong Ma","doi":"10.1109/ISAPE.2018.8634022","DOIUrl":"https://doi.org/10.1109/ISAPE.2018.8634022","url":null,"abstract":"In order to study the effect of discharge gap on microwave discharge, the paper has carried out a simulation for the particles' density distribution, conductivity distribution and the resulting frequency drift in discharge gaps of different sizes. The results show that, the smaller the gap radius and the greater the gap depth, the higher the resonance frequency; the gap size affected the change of particle concentration during the resonance process; and the parameters of resonance characteristics were different at the equilibrium time.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129843720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sen Wang, Hao Li, Yunpeng Zhang, Jiawei Long, E. Li
{"title":"A Helix-loaded Equiangular Spiral Antenna with Compact Structure","authors":"Sen Wang, Hao Li, Yunpeng Zhang, Jiawei Long, E. Li","doi":"10.1109/ISAPE.2018.8634203","DOIUrl":"https://doi.org/10.1109/ISAPE.2018.8634203","url":null,"abstract":"A broadband circular polarization antenna based on the composite structure of planar spiral and longitudinal helix is presented. Compared to single spiral antenna or helix antenna, proposed antenna has a better performance at low frequency by introducing two longitudinal helix arms connecting with the terminal of the planar spiral arms. As a result, the return loss, axial ratio (AR) and gain are both improved without increasing the antenna size. The antenna is designed to operate from 2 to 18 GHz and has a physical dimension of $boldsymbol{varphi} 50times 45 mathbf{mm}^{3}$. A prototype was fabricated and tested, the results show that the proposed antenna can provide an AR of less than 2.5 dB, a return loss of less than −15 dB and a gain of greater than 0.5 dBi.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128789348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qichang Li, Liu Liu, C. Tao, Yanping Lu, T. Zhou, Zhongliang Wei
{"title":"Performance Analysis of a Massive MIMO System in Indoor Scenario","authors":"Qichang Li, Liu Liu, C. Tao, Yanping Lu, T. Zhou, Zhongliang Wei","doi":"10.1109/ISAPE.2018.8634053","DOIUrl":"https://doi.org/10.1109/ISAPE.2018.8634053","url":null,"abstract":"Massive multiple-input multiple-output (MIMO) is a potential candidate key technology for the fifth generation of wireless communication systems. In research to date, many investigations are based on theoretical channels with independent and identically distributed (i.i.d.) Rayleigh channels. In this paper, we focus on how a massive MIMO system performs in real propagation environments, specifically on channel performance of a realistic indoor scenario using large linear and circular antenna arrays. With massive MIMO, as the number of antennas increases and becomes much larger than the number of users, we get smaller singular value spreads and better orthogonality between user channels, what's more, the singular value spreads become more stable over channel realizations. The stability of singular value spread implies that bad channel conditions can be largely avoided. By analyzing the singular value spread of a massive MIMO system, it shows the measured channel can achieve performance close to the i.i.d. Rayleigh channel. So it can be conclude that the theoretical advantages of massive MIMO can also be harvest in real channel.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125571240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Yao, Zhi Yu, C. Yuan, Zhongxiang Zhou, Hailu Wang, Zebin Li
{"title":"Microwave technology used for plasma diagnostic in complicated situations","authors":"J. Yao, Zhi Yu, C. Yuan, Zhongxiang Zhou, Hailu Wang, Zebin Li","doi":"10.1109/ISAPE.2018.8634218","DOIUrl":"https://doi.org/10.1109/ISAPE.2018.8634218","url":null,"abstract":"In this paper, the microwave technology has been applied to measure the plasma parameters in large-volume AC glow discharge with coaxial gridded hollow electrodes. By measuring the phase shift of microwave through the plasma, the characteristics of the plasma density changing with the input power in hollow ac discharge plasma has been confirmed. The phase shift of the microwave is determined by vector network analyzer (PNA-N5234A) with antennas, and the selected microwave frequency is 30GHz. Then, the experimental results are compared with the theoretical results and are in good agreement. Additionally, using the improved probe technology, the plasma parameters also are obtained by probe diagnostics. And the probe results are compared to the microwave technology, which indicates that in the AC glow discharge the microwave diagnostic is more stable and accurate.","PeriodicalId":297368,"journal":{"name":"2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127231679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}