{"title":"Editorial overview: Per- and polyfluoroalkyl substances","authors":"Mallikarjuna N Nadagouda","doi":"10.1016/j.coche.2024.101001","DOIUrl":"https://doi.org/10.1016/j.coche.2024.101001","url":null,"abstract":"","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"44 ","pages":"Article 101001"},"PeriodicalIF":6.6,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antony C Minja , Karthick Raj AG , Arno Raes , Rituraj Borah , Sammy W Verbruggen
{"title":"Recent progress in developing non-noble metal-based photocathodes for solar green hydrogen production","authors":"Antony C Minja , Karthick Raj AG , Arno Raes , Rituraj Borah , Sammy W Verbruggen","doi":"10.1016/j.coche.2024.101000","DOIUrl":"https://doi.org/10.1016/j.coche.2024.101000","url":null,"abstract":"<div><p>Photocathodes play a vital role in photoelectrocatalytic water splitting by acting as catalysts for reducing protons to hydrogen gas when exposed to light. Recent advancements in photocathodes have focused on addressing the limitations of noble metal-based materials. These noble metal-based photocathodes rely on expensive and scarce metals such as platinum and gold as cocatalysts or ohmic back contacts, respectively, rendering the final system less sustainable and costly when applied at scale. This mini-review summarizes the important recent progress in the development of non-noble metal-based photocathodes and their performance in the hydrogen evolution reaction during photoelectrochemical (PEC) water splitting. These advancements bring non-noble metal-based photocathodes closer to their noble metal-based counterparts in terms of performance, thereby paving the way forward toward industrial-scale photoelectrolyzers or PEC cells for green hydrogen production.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"43 ","pages":"Article 101000"},"PeriodicalIF":6.6,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139505407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in single crystal and facet dependency of copper electrodes on electrochemical CO2 reduction","authors":"Yu Qiao, Brian Seger","doi":"10.1016/j.coche.2023.100999","DOIUrl":"https://doi.org/10.1016/j.coche.2023.100999","url":null,"abstract":"<div><p>Investigations on electrochemical CO<sub>2</sub> reduction reaction (eCO2RR) on copper (Cu) provide instructive information for the understanding and development of Cu-based catalysts and thus help improve their eCO2RR selectivity toward desired products. Although most studies on the reaction mechanism rely on computational simulations, experiments conducted on well-defined single-crystal structures are able to effectively mirror the ideal surfaces employed in simulation studies and thus convey insightful knowledge on the structure–performance correlation of Cu catalysts in eCO2RR. This mini-review provides an overview on state-of-the-art development of Cu single crystals and their facet dependency in eCO2RR in the recent years, followed by an outlook and perspective on what can be expected in the future.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"43 ","pages":"Article 100999"},"PeriodicalIF":6.6,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221133982300103X/pdfft?md5=fde215f4bd4d2062fbc7300a7406b5ea&pid=1-s2.0-S221133982300103X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139399085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial overview: Breaking down the barriers to implementing water reuse: Technology adoption, sociotechnical and regulatory frameworks, and integrated treatment trains","authors":"Lynn E Katz, Thomas Borch, Pei Xu","doi":"10.1016/j.coche.2023.100996","DOIUrl":"10.1016/j.coche.2023.100996","url":null,"abstract":"","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"43 ","pages":"Article 100996"},"PeriodicalIF":6.6,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139095171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elham Ramin , Antonio Gaetano Cardillo , Reinhard Liebers , Johannes Schmölder , Eric von Lieres , Wim Van Molle , Bastian Niebel , Laurent Natalis , Irina Meln , Mónica Perea-Vélez , Didier Clénet , John Bagterp Jørgensen , Bernt Nilsson , Daniel G. Bracewell , Krist V. Gernaey
{"title":"Accelerating vaccine manufacturing development through model-based approaches: current advances and future opportunities","authors":"Elham Ramin , Antonio Gaetano Cardillo , Reinhard Liebers , Johannes Schmölder , Eric von Lieres , Wim Van Molle , Bastian Niebel , Laurent Natalis , Irina Meln , Mónica Perea-Vélez , Didier Clénet , John Bagterp Jørgensen , Bernt Nilsson , Daniel G. Bracewell , Krist V. Gernaey","doi":"10.1016/j.coche.2023.100998","DOIUrl":"10.1016/j.coche.2023.100998","url":null,"abstract":"<div><p>This review highlights the importance of model-based approaches in accelerating vaccine manufacturing process development. The challenges of scaling up from laboratory to commercial processes are addressed through the adoption of Process Analytical Technology frameworks and Quality by Design principles. The application of various modeling approaches beyond downstream and upstream processes in vaccine production is discussed in detail. These <em>in silico</em> process simulation approaches enable deeper understanding of manufacturing dynamics, identification of critical process parameters, and the development of well-defined design spaces, ultimately leading to accelerated vaccine development and improved product quality. The authors stress the significance of an integrated modeling platform for vaccine manufacturing, exemplified by the Inno4Vac project. This initiative seeks to develop a comprehensive computational platform for vaccine manufacturing and stability testing, with a particular focus on stakeholder engagement and collaboration with regulatory bodies to ensure the acceptance and implementation of the platform.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"43 ","pages":"Article 100998"},"PeriodicalIF":6.6,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211339823001028/pdfft?md5=8912efbf49b42c4922d008ee79d2f9b5&pid=1-s2.0-S2211339823001028-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138826607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorena Chico-Mesa , Enrique Herrero , Rosa M Arán-Ais
{"title":"Tuning carbon dioxide electroreduction through selective facet exposure","authors":"Lorena Chico-Mesa , Enrique Herrero , Rosa M Arán-Ais","doi":"10.1016/j.coche.2023.100997","DOIUrl":"10.1016/j.coche.2023.100997","url":null,"abstract":"<div><p>The carbon dioxide reduction reaction (CO<sub>2</sub>RR) could reduce the atmospheric CO<sub>2</sub> and store the excess energy obtained by renewable sources. However, proper catalysts are sought to reduce the high overpotentials needed to electroreduce CO<sub>2</sub> and improve the selectivity toward a desired product. Through rational synthetic control, it is possible to obtain nanocrystals (NCs) with a certain shape, which is translated into a preferential surface orientation. Given the structure sensitivity of the CO<sub>2</sub>RR, the use of shape-controlled NCs allows for tuning the activity and selectivity of the reaction. This review analyzes the recent findings about shape-controlled NCs for the CO<sub>2</sub>RR regarding their synthesis, shape-dependent selectivity, and how to twist their catalytic behavior and stability by compositional modifications. The importance of combining in situ and <em>operando</em> techniques that enable proper correlations between the structural and compositional changes of the catalyst under CO<sub>2</sub>RR conditions, and the resulting product distribution is highlighted, aiming for a final transference to real application systems.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"43 ","pages":"Article 100997"},"PeriodicalIF":6.6,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211339823001016/pdfft?md5=92cca51b56184d2cbd6e4c7ba0773aef&pid=1-s2.0-S2211339823001016-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138826840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Damian T Agi, Kyla D Jones, Madelynn J Watson, Hailey G Lynch, Molly Dougher, Xinhe Chen, Montana N Carlozo, Alexander W Dowling
{"title":"Computational toolkits for model-based design and optimization","authors":"Damian T Agi, Kyla D Jones, Madelynn J Watson, Hailey G Lynch, Molly Dougher, Xinhe Chen, Montana N Carlozo, Alexander W Dowling","doi":"10.1016/j.coche.2023.100994","DOIUrl":"10.1016/j.coche.2023.100994","url":null,"abstract":"<div><p>We review recent advances in software platforms for model-based design (MBD) organized in five overarching themes — from (1) simulation to optimization, (2) commercial to open-source, (3) process-centric to multiscale, (4) mechanistic to data-driven, and (5) deterministic to uncertain — illustrated with several recent examples in membrane system design. We posit MBD provides (chemical) engineers with principled frameworks to tackle global grand challenges such as sustainable energy, clean water, and equitable access to healthcare by integrating knowledge across disciplines. As such, we predict MBD software, which has historically focused on engineered systems, will evolve to interact with models for natural and social systems more holistically. Finally, we emphasize the importance of open-source software development, especially by users who become contributors.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"43 ","pages":"Article 100994"},"PeriodicalIF":6.6,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138826556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Superstructure-based carbon capture and utilization process design","authors":"Xuechong Ding , Jue Li , Haijun Chen , Teng Zhou","doi":"10.1016/j.coche.2023.100995","DOIUrl":"https://doi.org/10.1016/j.coche.2023.100995","url":null,"abstract":"<div><p>The carbon capture and utilization (CCU) technology is an effective approach to reducing CO<sub>2</sub> emissions. Given the extensive range of existing technologies within the CCU framework, systematic methods for the optimal selection of economical and sustainable CCU pathways are crucial. To address this challenge, superstructure-based process design has emerged as a popular approach. Over the past several years, numerous contributions have been made in this area. This article provides an overview of surrogate models widely used in process synthesis and introduces mathematical methods for superstructure-based CCU process design. Recent advances in superstructure-based CCU process design are discussed across six selected application areas, including multistage separations for CO<sub>2</sub> capture, CO<sub>2</sub> thermochemical conversion, CO<sub>2</sub> electrochemical conversion, bioenergy with CCU, CO<sub>2</sub> transport network design, and energy systems design in CCU.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"43 ","pages":"Article 100995"},"PeriodicalIF":6.6,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138656359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Accelerating discrete particle simulation of particle-fluid systems","authors":"Shuai Zhang , Wei Ge","doi":"10.1016/j.coche.2023.100989","DOIUrl":"https://doi.org/10.1016/j.coche.2023.100989","url":null,"abstract":"<div><p>Balancing the accuracy and efficiency is critical when employing the discrete particle method to simulate particle-fluid systems in industrial reactors. This article systematically reviews the methods for accelerating discrete particle simulation, including the coarse-graining (CG) methods and the multiscale coupling methods, and pinpoints current challenges and difficulties in each category. In this work, the CG methods are classified into the CG Computational Fluid Dynamics (CFD)-DEM (computational fluid dynamics-discrete element method) and the multiphase particle-in-cell method according to their treatment of interparticle collisions, and the multiscale coupling methods are summarized based on spatial and temporal coupling. Despite their preliminary application in simulating industrial reactors, these methods still face challenges related to accuracy and applicability. Recently, machine learning-based simulations have gained great attention and may offer new insights into the acceleration of discrete particle simulation. We hope this article can assist researchers in comprehending the development of accelerating simulation techniques and encourage the exploration of novel models in this field.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"43 ","pages":"Article 100989"},"PeriodicalIF":6.6,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138472098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}