{"title":"NORMALIZED PARAMETERS OF A MAGNETORESISTIVE SENSOR IN BRIDGE CIRCUITS","authors":"Penin Alexandr, Sidorenko Anatolie","doi":"10.53081/MJPS.2021.20-1.08","DOIUrl":"https://doi.org/10.53081/MJPS.2021.20-1.08","url":null,"abstract":"Magnetoresistive sensors are considered as part of bridge circuits for measuring magnetic field strength and electric current value. Normalized or relative expressions are introduced to change the resistance of the sensor and the measured bridge voltage to increase the information content of the regime to provide the possibility of comparing the regimes of different sensors. To justify these expressions, a geometric interpretation of the bridge regimes, which leads to hyperbolic straight line geometry and a cross ratio of four points, is given. Upon a change in the sensor resistance, the bridge regime is quantified by the value of the cross ratio of four samples (three characteristic values and the current or real value) of voltage and resistance. The cross ratio, as a dimensionless value, is taken as a normalized expression for the bridge voltage and sensor resistance. Moreover, the cross ratio value is an invariant for voltage and resistance. The proposed approach considers linear and nonlinear dependences of measured voltage on sensor resistance from general positions.","PeriodicalId":291924,"journal":{"name":"The Moldavian Journal of the Physical Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115716645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Rusnac, I. Lungu, L. Ghimpu, G. Colibaba, T. Potlog
{"title":"STRUCTURAL AND OPTICAL PROPERTIES OF ZnO:Ga THIN FILMS DEPOSITED ON ITO/GLASS SUBSTRATES FOR OPTOELECTRONIC APPLICATIONS","authors":"D. Rusnac, I. Lungu, L. Ghimpu, G. Colibaba, T. Potlog","doi":"10.53081/MJPS.2021.20-1.07","DOIUrl":"https://doi.org/10.53081/MJPS.2021.20-1.07","url":null,"abstract":"Doped (with GaCl 3 ), undoped ZnO and ITO/ZnO:Ga nanostructured thin films are synthesized using the spray pyrolysis method. The doped ZnO thin films are synthesized at the atomic ratio of Ga/Zn added in the starting solution fixed at 1, 2, 3, and 5. Gallium-doped ZnO films synthesized on glass/ITO substrates are annealed at 450C in different environments: vacuum, oxygen, and hydrogen. X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and current–voltage (I–V) measurements are applied to characterize the structural properties, composition, surface morphology, and electrical properties of ZnO:Ga nanostructured thin films. X-ray diffraction analysis shows that ZnO:Ga films deposited on glass substrates have a dense and homogeneous surface with a hexagonal structure. The ZnO:Ga films deposited on glass/ITO substrates are composed of two phases, namely, hexagonal ZnO and cubic ITO. The I–V characteristics show the presence of good ohmic contacts between Al and In metals and ZnO:Ga thin films regardless of the nature of the substrate and the annealing atmosphere.","PeriodicalId":291924,"journal":{"name":"The Moldavian Journal of the Physical Sciences","volume":"7 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113962042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PARTIAL WAVE BASIS ADAPTED TO EXTERIOR BOUNDARY CONDITIONS OF AN ELASTIC PLATE","authors":"S. Cojocaru","doi":"10.53081/MJPS.2021.20-1.02","DOIUrl":"https://doi.org/10.53081/MJPS.2021.20-1.02","url":null,"abstract":"An approach to describing normal elastic vibration modes in confined systems is presented. In a standard treatment of the problem, the displacement field is represented by a superposition of partial waves of a general form, e.g., plane waves. The unknown coefficients of superposition are then obtained from the equation of motion and the full set of boundary conditions. In the proposed approach, the functional form of partial waves is chosen in such a way as to satisfy the boundary conditions on exterior surfaces identically, i.e., even if the unknown quantities determined by the remaining constraints are found in an approximation, numerically or analytically. Some examples of solutions for composite elastic plates are discussed to illustrate the efficiency of the approach and its relevance for applications.","PeriodicalId":291924,"journal":{"name":"The Moldavian Journal of the Physical Sciences","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123401558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}