{"title":"Multi-Armed Bandit Algorithm Policy for LoRa Network Performance Enhancement","authors":"A. Askhedkar, B. Chaudhari","doi":"10.3390/jsan12030038","DOIUrl":"https://doi.org/10.3390/jsan12030038","url":null,"abstract":"Low-power wide-area networks (LPWANs) constitute a variety of modern-day Internet of Things (IoT) applications. Long range (LoRa) is a promising LPWAN technology with its long-range and low-power benefits. Performance enhancement of LoRa networks is one of the crucial challenges to meet application requirements, and it primarily depends on the optimal selection of transmission parameters. Reinforcement learning-based multi-armed bandit (MAB) is a prominent approach for optimizing the LoRa parameters and network performance. In this work, we propose a new discounted upper confidence bound (DUCB) MAB to maximize energy efficiency and improve the overall performance of the LoRa network. We designed novel discount and exploration bonus functions to maximize the policy rewards to increase the number of successful transmissions. The results show that the proposed discount and exploration functions give better mean rewards irrespective of the number of trials, which has significant importance for LoRa networks. The designed policy outperforms other policies reported in the literature and has a lesser time complexity, a comparable mean rewards, and improves the mean rewards by a minimum of 8%.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126825436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Praveen Kumar, M. Mm, P. Kumar, T. Ali, M. Alsath, V. Suresh
{"title":"Characteristics Mode Analysis-Inspired Compact UWB Antenna with WLAN and X-Band Notch Features for Wireless Applications","authors":"Praveen Kumar, M. Mm, P. Kumar, T. Ali, M. Alsath, V. Suresh","doi":"10.3390/jsan12030037","DOIUrl":"https://doi.org/10.3390/jsan12030037","url":null,"abstract":"A compact circular structured monopole antenna for ultrawideband (UWB) and UWB dual-band notch applications is designed and fabricated on an FR4 substrate. The UWB antenna has a hybrid configuration of the circle and three ellipses as the radiating plane and less than a quarter-lowered ground plane. The overall dimensions of the projected antennas are 16 × 11 × 1.6 mm3, having a −10 dB impedance bandwidth of 113% (3.7–13.3 GHz). Further, two frequency band notches were created using two inverted U-shaped slots on the radiator. These slots notch the frequency band from 5–5.6 GHz and 7.3–8.3 GHz, covering IEEE 802.11, Wi-Fi, WLAN, and the entire X-band satellite communication. A comprehensive frequency and time domain analysis is performed to validate the projected antenna design’s effectiveness. In addition, a circuit model of the projected antenna design is built, and its performance is evaluated. Furthermore, unlike the traditional technique, which uses the simulated surface current distribution to verify functioning, characteristic mode analysis (CMA) is used to provide deeper insight into distinct modes on the antenna.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116808427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farida Habib Semantha, S. Azam, Bharanidharan Shanmugam, Kheng Cher Yeo
{"title":"PbDinEHR: A Novel Privacy by Design Developed Framework Using Distributed Data Storage and Sharing for Secure and Scalable Electronic Health Records Management","authors":"Farida Habib Semantha, S. Azam, Bharanidharan Shanmugam, Kheng Cher Yeo","doi":"10.3390/jsan12020036","DOIUrl":"https://doi.org/10.3390/jsan12020036","url":null,"abstract":"Privacy in Electronic Health Records (EHR) has become a significant concern in today’s rapidly changing world, particularly for personal and sensitive user data. The sheer volume and sensitive nature of patient records require healthcare providers to exercise an intense quantity of caution during EHR implementation. In recent years, various healthcare providers have been hit by ransomware and distributed denial of service attacks, halting many emergency services during COVID-19. Personal data breaches are becoming more common day by day, and privacy concerns are often raised when sharing data across a network, mainly due to transparency and security issues. To tackle this problem, various researchers have proposed privacy-preserving solutions for EHR. However, most solutions do not extensively use Privacy by Design (PbD) mechanisms, distributed data storage and sharing when designing their frameworks, which is the emphasis of this study. To design a framework for Privacy by Design in Electronic Health Records (PbDinEHR) that can preserve the privacy of patients during data collection, storage, access and sharing, we have analysed the fundamental principles of privacy by design and privacy design strategies, and the compatibility of our proposed healthcare principles with Privacy Impact Assessment (PIA), Australian Privacy Principles (APPs) and General Data Protection Regulation (GDPR). To demonstrate the proposed framework, ‘PbDinEHR’, we have implemented a Patient Record Management System (PRMS) to create interfaces for patients and healthcare providers. In addition, to provide transparency and security for sharing patients’ medical files with various healthcare providers, we have implemented a distributed file system and two permission blockchain networks using the InterPlanetary File System (IPFS) and Ethereum blockchain. This allows us to expand the proposed privacy by design mechanisms in the future to enable healthcare providers, patients, imaging labs and others to share patient-centric data in a transparent manner. The developed framework has been tested and evaluated to ensure user performance, effectiveness, and security. The complete solution is expected to provide progressive resistance in the face of continuous data breaches in the patient information domain.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125478892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy-Efficient Relay Tracking and Predicting Movement Patterns with Multiple Mobile Camera Sensors","authors":"Z. Hussein, O. Banimelhem","doi":"10.3390/jsan12020035","DOIUrl":"https://doi.org/10.3390/jsan12020035","url":null,"abstract":"Camera sensor networks (CSN) have been widely used in different applications such as large building monitoring, social security, and target tracking. With advances in visual and actuator sensor technology in the last few years, deploying mobile cameras in CSN has become a possible and efficient solution for many CSN applications. However, mobile camera sensor networks still face several issues, such as limited sensing range, the optimal deployment of camera sensors, and the energy consumption of the camera sensors. Therefore, mobile cameras should cooperate in order to improve the overall performance in terms of enhancing the tracking quality, reducing the moving distance, and reducing the energy consumed. In this paper, we propose a movement prediction algorithm to trace the moving object based on a cooperative relay tracking mechanism. In the proposed approach, the future path of the target is predicted using a pattern recognition algorithm by applying data mining to the past movement records of the target. The efficiency of the proposed algorithms is validated and compared with another related algorithm. Simulation results have shown that the proposed algorithm guarantees the continuous tracking of the object, and its performance outperforms the other algorithms in terms of reducing the total moving distance of cameras and reducing energy consumption levels. For example, in terms of the total moving distance of the cameras, the proposed approach reduces the distance by 4.6% to 15.2% compared with the other protocols that do not use prediction.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116342354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reliability Evaluation for Chain Routing Protocols in Wireless Sensor Networks Using Reliability Block Diagram","authors":"Oruba Alfawaz, A. Khedr, B. Alwasel, Walid Osamy","doi":"10.3390/jsan12020034","DOIUrl":"https://doi.org/10.3390/jsan12020034","url":null,"abstract":"There are many different fields in which wireless sensor networks (WSNs) can be used such as environmental monitoring, healthcare, military, and security. Due to the vulnerability of WSNs, reliability is a critical concern. Evaluation of a WSN’s reliability is essential during the design process and when evaluating WSNs’ performance. Current research uses the reliability block diagram (RBD) technique, based on component functioning or failure state, to evaluate reliability. In this study, a new methodology-based RBD, to calculate the energy reliability of various proposed chain models in WSNs, is presented. A new method called D-Chain is proposed, to form the chain starting from the nearest node to the base station (BS) and to choose the chain head based on the minimum distance D, and Q-Chain is proposed, to form the chain starting from the farthest node from the BS and select the head based on the maximum weight, Q. Each chain has three different arrangements: single chain/single-hop, multi-chain/single-hop, and multi-chain/multi-hop. Moreover, we applied dynamic leader nodes to all of the models mentioned. The simulation results indicate that the multi Q-Chain/single-hop has the best performance, while the single D-Chain has the least reliability in all situations. In the grid scenario, multi Q-Chain/single-hop achieved better average reliability, 11.12 times greater than multi D-Chain/single-hop. On the other hand, multi Q-Chain/single-hop achieved 6.38 times better average reliability than multi D-Chain/single-hop, in a random scenario.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131075671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced Traffic Sign Recognition with Ensemble Learning","authors":"Xin Roy Lim, C. Lee, K. Lim, T. Ong","doi":"10.3390/jsan12020033","DOIUrl":"https://doi.org/10.3390/jsan12020033","url":null,"abstract":"With the growing trend in autonomous vehicles, accurate recognition of traffic signs has become crucial. This research focuses on the use of convolutional neural networks for traffic sign classification, specifically utilizing pre-trained models of ResNet50, DenseNet121, and VGG16. To enhance the accuracy and robustness of the model, the authors implement an ensemble learning technique with majority voting, to combine the predictions of multiple CNNs. The proposed approach was evaluated on three different traffic sign datasets: the German Traffic Sign Recognition Benchmark (GTSRB), the Belgium Traffic Sign Dataset (BTSD), and the Chinese Traffic Sign Database (TSRD). The results demonstrate the efficacy of the ensemble approach, with recognition rates of 98.84% on the GTSRB dataset, 98.33% on the BTSD dataset, and 94.55% on the TSRD dataset.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"213 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126750660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Smart Automotive Diagnostic and Performance Analysis Using Blockchain Technology","authors":"Ahmed Mohsen Yassin, H. Aslan, I. T. Abdel-Halim","doi":"10.3390/jsan12020032","DOIUrl":"https://doi.org/10.3390/jsan12020032","url":null,"abstract":"The automotive industry currently is seeking to increase remote connectivity to a vehicle, which creates a high demand to implement a secure way of connecting vehicles, as well as verifying and storing their data in a trusted way. Furthermore, much information must be leaked in order to correctly diagnose the vehicle and determine when or how to remotely update it. In this context, we propose a Blockchain-based, fully automated remote vehicle diagnosis system. The proposed system provides a secure and trusted way of storing and verifying vehicle data and analyzing their performance in different environments. Furthermore, we discuss many aspects of the benefits to different parties, such as the vehicle’s owner and manufacturers. Furthermore, a performance evaluation via simulation was performed on the proposed system using MATLAB Simulink to simulate both the vehicles and Blockchain and give a prototype for the system’s structure. In addition, OMNET++ was used to measure the expected system’s storage and throughput given some fixed parameters, such as sending the periodicity and speed. The simulation results showed that the throughput, end-to-end delay, and power consumption increased as the number of vehicles increased. In general, Original Equipment Manufacturers (OEMs) can implement this system by taking into consideration either increasing the storage to add more vehicles or decreasing the sending frequency to allow more vehicles to join. By and large, the proposed system is fully dynamic, and its configuration can be adjusted to satisfy the OEM’s needs since there are no specific constraints while implementing it.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124197528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vasilios A. Orfanos, S. Kaminaris, P. Papageorgas, D. Piromalis, Dionisis Kandris
{"title":"A Comprehensive Review of IoT Networking Technologies for Smart Home Automation Applications","authors":"Vasilios A. Orfanos, S. Kaminaris, P. Papageorgas, D. Piromalis, Dionisis Kandris","doi":"10.3390/jsan12020030","DOIUrl":"https://doi.org/10.3390/jsan12020030","url":null,"abstract":"The expediential increase in Internet communication technologies leads to its expansion to interests beyond computer networks. MEMS (Micro Electro Mechanical Systems) can now be smaller with higher performance, leading to tiny sensors and actuators with enhanced capabilities. WSN (Wireless Sensor Networks) and IoT (Internet of Things) have become a way for devices to communicate, share their data, and control them remotely. Machine-to-Machine (M2M) scenarios can be easily implemented as the cost of the components needed in that network is now affordable. Some of these solutions seem to be more affordable but lack important features, while other ones provide them but at a higher cost. Furthermore, there are ones that can cover great distances and surpass the limits of a Smart Home, while others are more specialized for operation in small areas. As there is a variety of choices available, a more consolidated view of their characteristics is needed to figure out the pros and cons of each of these technologies. As there are a great number of technologies examined in this paper, they are presented regarding their connectivity: Wired, Wireless, and Dual mode (Wired and Wireless). Their oddities are examined with metrics based on user interaction, technical characteristics, data integrity, and cost factor. In the last part of this article, a comparison of these technologies is presented as an effort to assist home automation users, administrators, or installers in making the right choice among them.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125803099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scaling Up Security and Efficiency in Financial Transactions and Blockchain Systems","authors":"N. Saqib, Shahad Talla AL-Talla","doi":"10.3390/jsan12020031","DOIUrl":"https://doi.org/10.3390/jsan12020031","url":null,"abstract":"Blockchain, the underlying technology powering the Bitcoin cryptocurrency, is a distributed ledger that creates a distributed consensus on a history of transactions. Cryptocurrency transaction verification takes substantially longer than it does for conventional digital payment systems. Despite blockchain’s appealing benefits, one of its main drawbacks is scalability. Designing a solution that delivers a quicker proof of work is one method for increasing scalability or the rate at which transactions are processed. In this paper, we suggest a solution based on parallel mining rather than solo mining to prevent more than two miners from contributing an equal amount of effort to solving a single block. Moreover, we propose the idea of automatically selecting the optimal manager over all miners by using the particle swarm optimization (PSO) algorithm. This process solves many problems of blockchain scalability and makes the system more scalable by decreasing the waiting time if the manager fails to respond. Additionally, the proposed model includes the process of a reward system and the distribution of work. In this work, we propose the particle swarm optimization proof of work (PSO-POW) model. Three scenarios have been tested including solo mining, parallel mining without using the PSO process, and parallel mining using the PSO process (PSO-POW model) to ensure the power and robustness of the proposed model. This model has been tested using a range of case situations by adjusting the difficulty level and the number of peers. It has been implemented in a test environment that has all the qualities required to perform proof of work for Bitcoin. A comparison between three different scenarios has been constructed against difficulty levels and the number of peers. Local experimental assessments were carried out, and the findings show that the suggested strategy is workable, solves the scalability problems, and enhances the overall performance of the blockchain network.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124350780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dhiaa Musleh, Meera Alotaibi, F. Alhaidari, Atta Rahman, R. Mohammad
{"title":"Intrusion Detection System Using Feature Extraction with Machine Learning Algorithms in IoT","authors":"Dhiaa Musleh, Meera Alotaibi, F. Alhaidari, Atta Rahman, R. Mohammad","doi":"10.3390/jsan12020029","DOIUrl":"https://doi.org/10.3390/jsan12020029","url":null,"abstract":"With the continuous increase in Internet of Things (IoT) device usage, more interest has been shown in internet security, specifically focusing on protecting these vulnerable devices from malicious traffic. Such threats are difficult to distinguish, so an advanced intrusion detection system (IDS) is becoming necessary. Machine learning (ML) is one of the promising techniques as a smart IDS in different areas, including IoT. However, the input to ML models should be extracted from the IoT environment by feature extraction models, which play a significant role in the detection rate and accuracy. Therefore, this research aims to introduce a study on ML-based IDS in IoT, considering different feature extraction algorithms with several ML models. This study evaluated several feature extractors, including image filters and transfer learning models, such as VGG-16 and DenseNet. Additionally, several machine learning algorithms, including random forest, K-nearest neighbors, SVM, and different stacked models were assessed considering all the explored feature extraction algorithms. The study presented a detailed evaluation of all combined models using the IEEE Dataport dataset. Results showed that VGG-16 combined with stacking resulted in the highest accuracy of 98.3%.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114883844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}