LoRa网络性能提升的多臂强盗算法策略

A. Askhedkar, B. Chaudhari
{"title":"LoRa网络性能提升的多臂强盗算法策略","authors":"A. Askhedkar, B. Chaudhari","doi":"10.3390/jsan12030038","DOIUrl":null,"url":null,"abstract":"Low-power wide-area networks (LPWANs) constitute a variety of modern-day Internet of Things (IoT) applications. Long range (LoRa) is a promising LPWAN technology with its long-range and low-power benefits. Performance enhancement of LoRa networks is one of the crucial challenges to meet application requirements, and it primarily depends on the optimal selection of transmission parameters. Reinforcement learning-based multi-armed bandit (MAB) is a prominent approach for optimizing the LoRa parameters and network performance. In this work, we propose a new discounted upper confidence bound (DUCB) MAB to maximize energy efficiency and improve the overall performance of the LoRa network. We designed novel discount and exploration bonus functions to maximize the policy rewards to increase the number of successful transmissions. The results show that the proposed discount and exploration functions give better mean rewards irrespective of the number of trials, which has significant importance for LoRa networks. The designed policy outperforms other policies reported in the literature and has a lesser time complexity, a comparable mean rewards, and improves the mean rewards by a minimum of 8%.","PeriodicalId":288992,"journal":{"name":"J. Sens. Actuator Networks","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Armed Bandit Algorithm Policy for LoRa Network Performance Enhancement\",\"authors\":\"A. Askhedkar, B. Chaudhari\",\"doi\":\"10.3390/jsan12030038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-power wide-area networks (LPWANs) constitute a variety of modern-day Internet of Things (IoT) applications. Long range (LoRa) is a promising LPWAN technology with its long-range and low-power benefits. Performance enhancement of LoRa networks is one of the crucial challenges to meet application requirements, and it primarily depends on the optimal selection of transmission parameters. Reinforcement learning-based multi-armed bandit (MAB) is a prominent approach for optimizing the LoRa parameters and network performance. In this work, we propose a new discounted upper confidence bound (DUCB) MAB to maximize energy efficiency and improve the overall performance of the LoRa network. We designed novel discount and exploration bonus functions to maximize the policy rewards to increase the number of successful transmissions. The results show that the proposed discount and exploration functions give better mean rewards irrespective of the number of trials, which has significant importance for LoRa networks. The designed policy outperforms other policies reported in the literature and has a lesser time complexity, a comparable mean rewards, and improves the mean rewards by a minimum of 8%.\",\"PeriodicalId\":288992,\"journal\":{\"name\":\"J. Sens. Actuator Networks\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Sens. Actuator Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jsan12030038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Sens. Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan12030038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低功耗广域网(lpwan)构成了各种现代物联网(IoT)应用。远程(LoRa)是一种很有前途的LPWAN技术,具有远程和低功耗的优点。LoRa网络的性能提升是满足应用需求的关键挑战之一,其主要取决于传输参数的优化选择。基于强化学习的多臂强盗(MAB)是优化LoRa参数和网络性能的重要方法。在这项工作中,我们提出了一种新的折扣上置信度界(DUCB) MAB,以最大限度地提高能源效率并提高LoRa网络的整体性能。我们设计了新的折扣和探索奖励函数来最大化政策奖励,以增加成功传输的数量。结果表明,无论试验次数多少,所提出的折扣和探索函数都能给出更好的平均奖励,这对LoRa网络具有重要意义。设计的策略优于文献中报道的其他策略,具有较小的时间复杂性,可比较的平均奖励,并将平均奖励提高至少8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Armed Bandit Algorithm Policy for LoRa Network Performance Enhancement
Low-power wide-area networks (LPWANs) constitute a variety of modern-day Internet of Things (IoT) applications. Long range (LoRa) is a promising LPWAN technology with its long-range and low-power benefits. Performance enhancement of LoRa networks is one of the crucial challenges to meet application requirements, and it primarily depends on the optimal selection of transmission parameters. Reinforcement learning-based multi-armed bandit (MAB) is a prominent approach for optimizing the LoRa parameters and network performance. In this work, we propose a new discounted upper confidence bound (DUCB) MAB to maximize energy efficiency and improve the overall performance of the LoRa network. We designed novel discount and exploration bonus functions to maximize the policy rewards to increase the number of successful transmissions. The results show that the proposed discount and exploration functions give better mean rewards irrespective of the number of trials, which has significant importance for LoRa networks. The designed policy outperforms other policies reported in the literature and has a lesser time complexity, a comparable mean rewards, and improves the mean rewards by a minimum of 8%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信