{"title":"Enhanced performance of a promising Au/TMDC heterostructure composed of MoTe2 nanosheets decorated with Au5 clusters: A DFT study","authors":"Esmail Vessally , Rovnag Rzayev , Bayan Azizi , Pawan Sharma , Abhishek Kumar","doi":"10.1016/j.comptc.2024.114933","DOIUrl":"10.1016/j.comptc.2024.114933","url":null,"abstract":"<div><div>This research uses density functional theory approach combined with the spin–orbit coupling to study how the SO<sub>x</sub> molecules stick to Au<sub>5</sub> cluster functionalized MoTe<sub>2</sub> nanosheets. In fact, the promising Au/MoTe<sub>2</sub> heterostructure system is constructed to model the attachment of gases on its surface. The high efficiency of adsorption process is evident from the strong sticking of the SO<sub>x</sub> to the Au atoms. Both Au<sub>1</sub> and Au<sub>5</sub> cluster modified MoTe<sub>2</sub> nanosheets revealed semiconducting feature, and in Au<sub>5</sub> cluster modified system, the band gap narrowed, while the conductivity is enhanced. Thus, results showed that adding Au cluster to the MoTe<sub>2</sub> made it best for adsorbing gases, while MoTe<sub>2</sub> without any additives absorbed the gases weakly. The conductivity and recovery time are also analyzed to further describe the results. Based on our theoretical consequences, the Au<sub>5</sub> cluster functionalized MoTe<sub>2</sub> (Au<sub>/</sub>MoTe<sub>2</sub> heterostructure system) seem good for constructing innovative sensors to detect SO<sub>x</sub> molecules.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114933"},"PeriodicalIF":3.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Baraka , M. Fodil , A. Mokadem , Mohammed Benali Kanoun , Souraya Goumri-Said
{"title":"A Comparative analysis of the physical properties of predicted MAX phases V2SnN and V2SnB with the synthesized V2SnC: Insights from DFT calculations","authors":"O. Baraka , M. Fodil , A. Mokadem , Mohammed Benali Kanoun , Souraya Goumri-Said","doi":"10.1016/j.comptc.2024.114971","DOIUrl":"10.1016/j.comptc.2024.114971","url":null,"abstract":"<div><div>The M<sub>n+1</sub>AX<sub>n</sub> phases, known for their unique combination of metallic and ceramic properties, have attracted significant attention due to their potential applications in extreme environments. In this study, we use density functional theory to investigate the structural, electronic, elastic, mechanical, and thermodynamic properties of V<sub>2</sub>SnX (X = B and N) compounds. Our results confirm that both compounds are elastically, thermodynamically, and dynamically stable, with a ductile nature. The metallic behavior is further supported by electronic band structures and density of states analysis, with V-<em>d</em> states playing a key role in electrical conductivity. Using the quasi-harmonic Debye model, we also examine the effects of temperature and pressure, finding that the bulk modulus and Debye temperature decrease with rising pressure below 50 GPa. Based on these findings, V<sub>2</sub>SnX compounds are ideal candidates for high-performance applications in harsh conditions, where materials need to maintain stability, conductivity, and resistance to thermal and mechanical stress.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114971"},"PeriodicalIF":3.0,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced chemical activity and gas sensing performance of silicene nanosheets by noble metal (Au, Ag) decoration: A DFT study","authors":"Bayan Azizi , Rovnag Rzayev , Esmail Vessally","doi":"10.1016/j.comptc.2024.114949","DOIUrl":"10.1016/j.comptc.2024.114949","url":null,"abstract":"<div><div>Based on density functional theory calculations, NO<sub>2</sub> and SO<sub>2</sub> adsorptions on the Ag- and Au-functionalized silicene nanosheets were theoretically examined to explore the potential of the modified silicene nanosheets as efficient gas sensors. According to band structure analysis, both Ag- and Au-functionalized silicene nanosheets revealed metallic behavior. The results on the NO<sub>2</sub> and SO<sub>2</sub> adsorptions on Ag- and Au-functionalized silicene monolayer indicate that both substrates can strongly adsorb the gas molecules with large adsorption energies. There are large charge accumulation between the Au/Ag and Si atoms, which represents the significant connection between these atoms. The large overlaps of the PDOS spectra of the Au and O atoms represent the covalent nature of bonding between them. These insights suggest that Ag and Au can be appropriate adatoms functionalized on the silicene nanosheets for detecting NO<sub>2</sub> and SO<sub>2</sub> molecules.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114949"},"PeriodicalIF":3.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bassey O. Ekpong , Miracle N. Ogbogu , Henry O. Edet , Emmanuel Emmanuel
{"title":"Yttrium-encapsulated fullerene (Y@C80) mono-doping with As, Bi, Sb, and P for the enhanced sensing of methylmalonic acid (MMA) as a biomarker for vitamin B12 deficiency: A DFT study","authors":"Bassey O. Ekpong , Miracle N. Ogbogu , Henry O. Edet , Emmanuel Emmanuel","doi":"10.1016/j.comptc.2024.114972","DOIUrl":"10.1016/j.comptc.2024.114972","url":null,"abstract":"<div><div>The development of new approaches or approaches for the detection of methylmalonic acid from biological samples is now necessary for early diagnosis of vitamin B<sub>12</sub> deficiency and appropriate treatment. In this study, Yttrium-encapsulated fullerene (Y@C<sub>80</sub>) doped with arsenic (As), bismuth (Bi), phosphorous (P), and antimony (Sb) was investigated for its ability to sense methylmalonic acid (MMA) as a biomarker using M06-2X/GenECP/def2svp/LanL2DZ method. The nanostructural analysis showed a marginal deviation in the bond lengths between atoms of the structure upon optimization of the structures interacting with the MMA biomarker, which demonstrated the stability of the system for sensing. The HOMO-LUMO reactivity descriptor revealed that the compound was reactive toward the sensing of the MMA biomarker, as the various systems MMA_As_Y@C<sub>80</sub>, MMA_Bi_Y@C<sub>80</sub>, MMA_P_Y@C<sub>80</sub>, and MMA_Sb_Y@C<sub>80</sub> demonstrated relatively short energy gaps of 2.039 eV, 2.025 eV, 2.135 eV, and 2.023 eV, respectively. The nanomaterial strongly adsorbed the biomarker, as indicated by the negative adsorption energies of −0.47075 eV, −0.70478 eV, 0.9034 eV, and −0.5388 eV corresponding to MMA_As_Y@C<sub>80</sub>, MMA_Bi_Y@C<sub>80</sub>, MMA_P_Y@C<sub>80</sub>, and MMA_Sb_Y@C<sub>80</sub>, respectively; however, MMA-P-Y@C<sub>80</sub> showed a weaker ability to sense the biomarker. Additionally, the recovery time after the detection of the biomarker was relatively short, comparable to the increase in the adsorption strength, with MMA-Bi-Y@C<sub>80</sub> having the shortest recovery time (3.829 × 10<sup>−37</sup>). This is significant for the development of a highly sensitive and efficient technique for methylmalonic acid (MMA) biomarker sensing.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114972"},"PeriodicalIF":3.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro Oliveira Mariz de Carvalho, Rogério Custodio
{"title":"Continuous approximation for linear combination coefficients: Exploring a neglected concept","authors":"Pedro Oliveira Mariz de Carvalho, Rogério Custodio","doi":"10.1016/j.comptc.2024.114948","DOIUrl":"10.1016/j.comptc.2024.114948","url":null,"abstract":"<div><div>An alternative approach is introduced for accurately describe atomic orbitals using an integral transform of Gaussian-type basis functions (GTO) combined with continuous and analytical weight functions. The functional form of these weight functions was optimized using the variational criterion, achieving μHartree-level precision in energy calculations for atoms, monovalent ions up to the third period of the periodic table, and the H<sub>2</sub> molecule. However, errors increased for heavier atoms, such as sulfur and chlorine, indicating the need for further refinement of the weight functions. This approach enhances the accuracy of electronic structure calculations, offering a rigorous alternative for deriving one-electron wave functions from discrete basis sets and vice-versa for atoms and molecules.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114948"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How to get rid of imaginary frequencies within ONIOM geometry optimizations: A DFT study on the effect of basis set and link atom distances in Cu-ZSM-5","authors":"Michele De Rosa, Simone Morpurgo","doi":"10.1016/j.comptc.2024.114956","DOIUrl":"10.1016/j.comptc.2024.114956","url":null,"abstract":"<div><div>Two extended clusters representing different portions of Cu-ZSM-5 were treated within a two-layer ONIOM approximation, employing DFT calculations for both the real and the model system. Despite a two-step optimization procedure successfully employed in previous work, a consistent number of imaginary and anomalous frequencies appeared after the vibrational analysis. These artefacts depend both on the basis set assigned to link atoms and on an improper setting of the O–H distances, where H are the link atoms at the boundaries of the model system. The latter problem, revealed for the first time in the present study, originates from the default scale factor employed by the ONIOM routine within Gaussian-09. Once basis set and <em>g</em> scale factor are properly set, all imaginary and anomalous frequencies disappear. The present findings may represent an interesting and practical solution to an annoying computational problem, whenever it occurs in the framework of ONIOM calculations.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114956"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comprehensive molecular description of sertraline hydrochloride: From solid state to electronic structure","authors":"A.C.B. Morais , A.S.N. Aguiar , P. Perjesi , H.B. Napolitano , L.L. Borges","doi":"10.1016/j.comptc.2024.114957","DOIUrl":"10.1016/j.comptc.2024.114957","url":null,"abstract":"<div><div>Sertraline is a selective serotonin reuptake inhibitor (SSRI) widely used as an antidepressant. The presence of HCl in forming sertraline hydrochloride affects its physicochemical properties. This article aimed to understand the molecular and electronic structures of sertraline hydrochloride. For this, theoretical calculations were carried out at the DFT/M06-2X/6-311++G(d,p) level of theory. The molecular topology was studied. In the case of the C10–H⋯Cl interaction, the Hirshfeld surface showed that the contacts between the H atom and the Cl anion equal the sum of the van der Waals radii. This structure is susceptible to electrophilic attacks according to the Fukui function. Frontier molecular orbital (HOMO and LUMO) showed that the presence of HCl increased the acidic character of the sertraline. Topological analysis of SERTH showed that N<img>H⋯Cl hydrogen bond type interactions are predominant and contribute to the stability of the crystal.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114957"},"PeriodicalIF":3.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Yi , Tong Yan , Anqi Li , Changluo Zheng , Lidong Zhang , Longwei Cheng , Lili Lei , Pan Wang
{"title":"Theoretical and modeling studies on the kinetics of diethylamine dehydrogenation and subsequent isomerization and decomposition reactions","authors":"Jing Yi , Tong Yan , Anqi Li , Changluo Zheng , Lidong Zhang , Longwei Cheng , Lili Lei , Pan Wang","doi":"10.1016/j.comptc.2024.114950","DOIUrl":"10.1016/j.comptc.2024.114950","url":null,"abstract":"<div><div>Small-molecule nitrogen-containing contaminants can be produced by the pyrolysis of diethylamine (DEA) alone or in conjunction with other molecules. To investigate the theoretical chemistry of the combustion of DEA, the CBS method determines the potential energy surface and the rate constants are calculated based on a combination of RRKM and TST theories. The H-abstraction reactions by H radicals are more kinetically advantageous. Site α has the most difficult H-abstraction procedure, but site γ has the competitive capacity to form subsequent products. The H-abstraction by NO<sub>2</sub> radical produces <em>trans</em>-HONO, <em>cis</em>-HONO, and HNO<sub>2</sub>. For the reaction channels of DEA radicals, decomposition reactions have more kinetic advantages than isomerization. Kinetic parameters were obtained and the model was modified based on the fitted rate constants. The modified model has better predictive ability at low temperatures. This work provides extensive data to improve the modeling of DEA combustion at low and medium temperatures.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114950"},"PeriodicalIF":3.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wanjiang You , Hao Zou , Xiaoqiang Wang , Lielin Wang , Ning Pan , Fang Xiang
{"title":"First-principles density functional study of iodine molecule adsorption on stable CuS surfaces","authors":"Wanjiang You , Hao Zou , Xiaoqiang Wang , Lielin Wang , Ning Pan , Fang Xiang","doi":"10.1016/j.comptc.2024.114952","DOIUrl":"10.1016/j.comptc.2024.114952","url":null,"abstract":"<div><div>The present work investigated the adsorption of gaseous iodine molecules (I<sub>2</sub>) on stable CuS surface, which has demonstrated excellent performance as an adsorbent for I<sub>2</sub> removal, with first-principles density functional theory (DFT). In this work, a pair of asymmetric surfaces (marked as slab1 and slab2) formed by breaking the weakest bond along (0<!--> <!-->0<!--> <!-->1) direction are chosen to present CuS surfaces. The findings indicate that the adsorption of I<sub>2</sub> molecules on the pristine CuS(0<!--> <!-->0<!--> <!-->1) surface is relatively weak, while surface defects significantly enhance the binding strength of I<sub>2</sub>. In particular, S-vacancy CuS(0<!--> <!-->0<!--> <!-->1) surfaces exhibit considerably higher adsorption energy for I<sub>2</sub> compared to Cu-vacancy surfaces. We found that the hollow and Cu-top sites are typically the dominant adsorption sites, and the initial orientation of I<sub>2</sub> relative to the surface also influences the adsorption performance.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114952"},"PeriodicalIF":3.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muzzakkir Amin, Mohammad Musfiqur Rahman, Md Kazi Rokunuzzaman, Md Kamal Hossain, Farid Ahmed
{"title":"First-principles study of aromatic amino acid encapsulation in single-walled BN and AlN nanotubes","authors":"Muzzakkir Amin, Mohammad Musfiqur Rahman, Md Kazi Rokunuzzaman, Md Kamal Hossain, Farid Ahmed","doi":"10.1016/j.comptc.2024.114954","DOIUrl":"10.1016/j.comptc.2024.114954","url":null,"abstract":"<div><div>Aromatic molecules exhibit strong non-covalent interactions with nanotubes, influencing their encapsulation properties. This study uses DFT calculations to explore the encapsulation of aromatic amino acids within zigzag (ZZ), chiral (R/S), and armchair (AC) single-walled aluminum nitride nanotubes (AlNNTs) and boron nitride nanotubes (BNNTs). The results reveal that zigzag AlNNTs exhibit the highest encapsulation affinity compared to other chiralities, while chiral BNNTs show enhanced encapsulation. Encapsulation energy decreases with increasing nanotube radius, indicating reduced affinity. Overall, the studied BNNTs demonstrate stronger encapsulation energy compared to AlNNTs. The bandgap energy of the encapsulated structures varies significantly with nanotube diameter and chirality. The physisorption process plays a major role in encapsulation, affecting the geometric and electronic properties of the nanotubes and enhancing the stability and efficacy of the encapsulated amino acids. These findings highlight the potential of these nanostructures for advanced applications, including targeted drug delivery and molecular sensing.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1242 ","pages":"Article 114954"},"PeriodicalIF":3.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}