S. Pasricha, Viney Ugave, Charles W. Anderson, Qi Han
{"title":"LearnLoc: A framework for smart indoor localization with embedded mobile devices","authors":"S. Pasricha, Viney Ugave, Charles W. Anderson, Qi Han","doi":"10.5555/2830840.2830845","DOIUrl":"https://doi.org/10.5555/2830840.2830845","url":null,"abstract":"There has been growing interest in location-based services and indoor localization in recent years. While several smartphone based indoor localization techniques have been proposed, these techniques have many shortcomings related to accuracy and consistency. These prior efforts also ignore energy consumption analysis which is a crucial quality metric in resource-constrained smartphones. In this work, we propose novel techniques based on machine learning algorithms and smart sensor management for real-time indoor localization using smartphones. We implement our proposed techniques as well as state-of-the-art techniques on real smartphones and evaluate their tracking effectiveness and energy overheads across several diverse real-world indoor environments. Our best technique improves upon prior work, achieving indoor localization accuracy between 1-3 meters.","PeriodicalId":281383,"journal":{"name":"2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132844385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Santiago Pagani, M. Shafique, Heba Khdr, Jian-Jia Chen, J. Henkel
{"title":"seBoost: Selective boosting for heterogeneous manycores","authors":"Santiago Pagani, M. Shafique, Heba Khdr, Jian-Jia Chen, J. Henkel","doi":"10.1109/CODESISSS.2015.7331373","DOIUrl":"https://doi.org/10.1109/CODESISSS.2015.7331373","url":null,"abstract":"Boosting techniques have been widely adopted in commercial multicore and manycore systems, mainly because they provide means to satisfy performance requirements surges, for one or more cores, at run-time. Current boosting techniques select the boosting levels (for boosted cores) and the throttle-down levels (for non-boosted cores) either arbitrarily or through step-wise control approaches. These methods might result in unnecessary performance losses for the non-boosted cores, in short boosting intervals, in failing to satisfy the required performance surges, or in unnecessary high power and energy consumption. This paper presents an efficient and lightweight run-time boosting technique based on transient temperature estimation, called seBoost. Our technique guarantees meeting the performance requirements surges at run-time, thus maximizing the boosting time with a minimum loss of performance for the non-boosted cores.","PeriodicalId":281383,"journal":{"name":"2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129493584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Kriebel, Arun K. Subramaniyan, Semeen Rehman, Segnon Jean Bruno Ahandagbe, M. Shafique, J. Henkel
{"title":"R2Cache: Reliability-aware reconfigurable last-level cache architecture for multi-cores","authors":"F. Kriebel, Arun K. Subramaniyan, Semeen Rehman, Segnon Jean Bruno Ahandagbe, M. Shafique, J. Henkel","doi":"10.1109/CODESISSS.2015.7331362","DOIUrl":"https://doi.org/10.1109/CODESISSS.2015.7331362","url":null,"abstract":"On-chip last-level caches in multicore systems are one of the most vulnerable components to soft errors. However, vulnerability to soft errors highly depends upon the parameters and configuration of the last-level cache, especially when executing different applications. Therefore, in a reconfigurable cache architecture, the cache parameters can be adapted at run-time to improve its reliability against soft errors. In this paper we propose a novel reliability-aware reconfigurable last-level cache architecture (R2Cache) for multicore systems. It provides reliability-wise efficient cache configurations (i.e. cache parameter selection and cache partitioning) for different concurrently executing applications under user-provided tolerable performance overheads. To enable run-time adaptations, we also introduce a lightweight online vulnerability predictor that exploits the knowledge of performance metrics like number of L2 misses to accurately estimate the cache vulnerability to soft errors. Based on the predicted vulnerabilities of different concurrently executing applications in the current execution epoch, our run-time reliability manager reconfigures the cache such that, for the next execution epoch, the total vulnerability for all concurrently executing applications is minimized. In scenarios where single-bit error correction for cache lines may be afforded, vulnerability-aware reconfigurations can be leveraged to increase the reliability of the last-level cache against multi-bit errors. Compared to state-of-the-art, the proposed architecture provides 24% vulnerability savings when averaged across numerous experiments, while reducing the vulnerability by more than 60% for selected applications and application phases.","PeriodicalId":281383,"journal":{"name":"2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127837024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Schwambach, Sébastien Cleyet-Merle, Alain Issard, S. Mancini
{"title":"Fast parallel application and multiprocessor design space exploration from sequential code","authors":"V. Schwambach, Sébastien Cleyet-Merle, Alain Issard, S. Mancini","doi":"10.1109/CODESISSS.2015.7331379","DOIUrl":"https://doi.org/10.1109/CODESISSS.2015.7331379","url":null,"abstract":"When designing an application-specific multiprocessor, two key questions arise: (i) how to size the multiprocessor platform to meet application requirements with lowest area and power consumption; and (ii) how to parallelize the target application in order maximize the utilization of the platform. In this paper, we present a methodology for early joint parallel application and multiprocessor design space exploration from sequential application traces and parallelization scenarios. We describe its implementation in Parana, a fast trace-driven simulator, targeting OpenMP applications on the STMicroelectronics' STxP70 Application-Specific Multiprocessor. Results for a NAS Parallel Benchmark and two computer vision applications show an error margin of less than 10% compared to the reference cycle-approximate simulator, with lower modeling effort and one order of magnitude faster execution time.","PeriodicalId":281383,"journal":{"name":"2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122362588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Srinath Arunachalam, Thidapat Chantem, R. Dick, X. Hu
{"title":"An online wear state monitoring methodology for off-the-shelf embedded processors","authors":"Srinath Arunachalam, Thidapat Chantem, R. Dick, X. Hu","doi":"10.1109/CODESISSS.2015.7331374","DOIUrl":"https://doi.org/10.1109/CODESISSS.2015.7331374","url":null,"abstract":"The continued scaling of transistors has led to an exponential increase in on-chip power density, which has resulted in increasing temperature. In turn, the increase in temperature directly leads to the increase in the rate of wear of a processor. Negative-bias temperature instability (NBTI) is one of the most dominant integrated circuit (IC) failure mechanisms [13, 5] that strongly depends on temperature. NBTI manifests in the form of increased circuit delays which can lead to timing failures and processor crashes. The ability to monitor the wear progression of a processor due to NBTI is valuable when designing real-time embedded systems. While NBTI can be detected using wear state sensors, not all chips are equipped with these sensors because detecting wear due to NBTI requires modifications to the chip design and incurs area and power overhead. NBTI sensor data may also not be exposed to users in software. In addition, wear sensors cannot take into account variations in wear due to the differences in the wear sensor devices and the other functional devices and their operating conditions. In this paper, we propose a lightweight, online methodology to monitor the wear process due to NBTI for off-the-shelf embedded processors. Our proposed method requires neither data on the threshold voltage and critical paths nor additional hardware. Our methodology can also be extended to predict the wear progression due to some other dominant IC failure mechanisms. Experiments on embedded processors provide insights on NBTI wear progression over time. This knowledge can be used to design real-time embedded systems that explicitly consider runtime wear progression to increase predictability and maintain lifetime reliability requirements.","PeriodicalId":281383,"journal":{"name":"2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130249674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An approximate compressor for wearable biomedical healthcare monitoring systems","authors":"Farzad Samie, L. Bauer, J. Henkel","doi":"10.5555/2830840.2830855","DOIUrl":"https://doi.org/10.5555/2830840.2830855","url":null,"abstract":"Technology advancements as well as the Internet-of-Things paradigm enable the design of wearable personal healthcare monitoring systems. Ultra-low-power design is a challenging area for these battery-operated wearable devices, where the energy supply is limited and hardware resources are scarce. Some biomedical applications tolerate small errors in the values of the biosignal or small degradation in the quality, which can be exploited to reduce the energy requirements. This paper presents an approximate compression technique for biosignals in a wearable healthcare monitoring system. It takes advantage of error tolerance in biosignals and finds the shortest code to compress the data while keeping the error in an acceptable range. Our approximate compressor does not demand any hardware modification and thus can be used in existing wearable devices. The proposed approach for reducing the size of the Huffman table can save 1 MBit storage, on average. It also makes our approximate compressor suitable for runtime adaptation, i.e. creating a new Huffman table based on updated values. Compared to state-of-the-art, our experimental results show up to 60% reduction in data size that is to be transmitted via radio. As wireless communication contributes significantly to the total energy consumption of wearable devices, this improvement can increase the battery lifetime of our healthcare monitoring prototype from 7 days to 10 days.","PeriodicalId":281383,"journal":{"name":"2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127909297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kuangya Zhai, Richard Townsend, L. Lairmore, Martha A. Kim, S. Edwards
{"title":"Hardware synthesis from a recursive functional language","authors":"Kuangya Zhai, Richard Townsend, L. Lairmore, Martha A. Kim, S. Edwards","doi":"10.1109/CODESISSS.2015.7331371","DOIUrl":"https://doi.org/10.1109/CODESISSS.2015.7331371","url":null,"abstract":"Abstraction in hardware description languages stalled at the register-transfer level decades ago, yet few alternatives have had much success, in part because they provide only modest gains in expressivity. We propose to make a much larger jump: a compiler that synthesizes hardware from behavioral functional specifications. Our compiler translates general Haskell programs into a restricted intermediate representation before applying a series of semantics-preserving transformations, concluding with a simple syntax-directed translation to SystemVerilog. Here, we present the overall framework for this compiler, focusing on the intermediate representations involved and our method for translating general recursive functions into equivalent hardware. We conclude with experimental results that depict the performance and resource usage of the circuitry generated with our compiler.","PeriodicalId":281383,"journal":{"name":"2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128497322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selma Saidi, R. Ernst, S. Uhrig, Henrik Theiling, B. Dinechin
{"title":"The shift to multicores in real-time and safety-critical systems","authors":"Selma Saidi, R. Ernst, S. Uhrig, Henrik Theiling, B. Dinechin","doi":"10.1109/CODESISSS.2015.7331385","DOIUrl":"https://doi.org/10.1109/CODESISSS.2015.7331385","url":null,"abstract":"In real-time and safety-critical systems, the move towards multicores is becoming unavoidable in order to keep pace with the increasing required processing power and to meet the high integration trend while maintaining a reasonable power consumption. However, standard multicore systems are mainly designed to increase average performance, whereas embedded systems have additional requirements with respect to safety, reliability and realtime behavior. Therefore, the shift to multicores raises several challenges the embedded community has to face. These challenges involve the design of certifiable multicore platforms, the management of shared resources and the development/integration of parallel software. These issues are encountered at different steps of system development, from modeling and design to software implementation and hardware deployment. Therefore, both multi-core/semiconductor manufacturers and the real-time community have to bridge the gap in order to meet the challenges imposed by multicores. The goal of this paper is to trigger such a discussion as an attempt to bridge the gap between the two worlds and to raise awareness about the hurdles and challenges that need to be tackled.","PeriodicalId":281383,"journal":{"name":"2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125917887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caio Hoffman, M. Côrtes, Diego F. Aranha, G. Araújo
{"title":"Computer security by hardware-intrinsic authentication","authors":"Caio Hoffman, M. Côrtes, Diego F. Aranha, G. Araújo","doi":"10.1109/CODESISSS.2015.7331377","DOIUrl":"https://doi.org/10.1109/CODESISSS.2015.7331377","url":null,"abstract":"The widespread embedding of electronic devices into the daily-life objects, and their integration in the so called Internet of the Things (IoT), has raised a number of challenges for the design of Systems-on-Chip (SoCs) devices. Tiny manufacturing costs, stringent security, and ultra-low power operation constraints have considerably raised SoC design requirements. More than incremental approaches which try to re-use current cryptographic mechanisms, the new generation of IoT devices will require novel solutions which deeply integrate their hardware-intrinsic features to program execution. This paper proposes a low-cost PUF-based authentication architecture aiming to secure code execution in IoT SoCs. The solution is deeply embedded into the processor micro-architecture, so as to minimize re-design costs and performance penalties. This new architecture model not only deals with the most common threats against code and data authenticity and integrity, but also provides an approach to extract from processor's caches a stable and unpredictable key that is used in the code and data authentication process.","PeriodicalId":281383,"journal":{"name":"2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130061887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy efficient FFT implementation through stage skipping and merging","authors":"Namita Sharma, P. Panda, F. Catthoor","doi":"10.1109/CODESISSS.2015.7331378","DOIUrl":"https://doi.org/10.1109/CODESISSS.2015.7331378","url":null,"abstract":"Fast Fourier Transform (FFT) implementation is characterized by a large number of memory access operations. For FFTs with a significant number of zeros at the input, commonly found in broadcasting standards, we propose energy optimizations leading to reduced memory accesses. We also present an energy estimate based technique for selecting an energy-efficient Register File size, for implementing FFT in both Single Instruction Multiple Data (SIMD) and non-SIMD architectures. Experimental results for different configurations show a variation of 18.5% to 58.5% in energy consumption across the best and worst choices of RF size in the considered range. The proposed implementation is up to 92% more energy efficient than both the non-optimized and pruned radix-2 FFT implementations.","PeriodicalId":281383,"journal":{"name":"2015 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125501087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}