A. Gabriel, T. Ulrich, M. Marchandon, J. Biemiller, J. Rekoske
{"title":"3D Dynamic Rupture Modeling of the 6 February 2023, Kahramanmaraş, Turkey Mw 7.8 and 7.7 Earthquake Doublet Using Early Observations","authors":"A. Gabriel, T. Ulrich, M. Marchandon, J. Biemiller, J. Rekoske","doi":"10.1785/0320230028","DOIUrl":"https://doi.org/10.1785/0320230028","url":null,"abstract":"The 2023 Turkey earthquake sequence involved unexpected ruptures across numerous fault segments. We present 3D dynamic rupture simulations to illuminate the complex dynamics of the earthquake doublet. Our models are constrained by observations available within days of the sequence and deliver timely, mechanically consistent explanations of the unforeseen rupture paths, diverse rupture speeds, multiple slip episodes, heterogeneous fault offsets, locally strong shaking, and fault system interactions. Our simulations link both earthquakes, matching geodetic and seismic observations and reconciling regional seismotectonics, rupture dynamics, and ground motions of a fault system represented by 10 curved dipping segments and embedded in a heterogeneous stress field. The Mw 7.8 earthquake features delayed backward branching from a steeply branching splay fault, not requiring supershear speeds. The asymmetrical dynamics of the distinct, bilateral Mw 7.7 earthquake are explained by heterogeneous fault strength, prestress orientation, fracture energy, and static stress changes from the previous earthquake. Our models explain the northward deviation of its eastern rupture and the minimal slip observed on the Sürgü fault. 3D dynamic rupture scenarios can elucidate unexpected observations shortly after major earthquakes, providing timely insights for data-driven analysis and hazard assessment toward a comprehensive, physically consistent understanding of the mechanics of multifault systems.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139327854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fault-Slip Potential near the Deadly 8 September 2023 Mw 6.8 Al Haouz, Morocco, Earthquake","authors":"Will Levandowski","doi":"10.1785/0320230037","DOIUrl":"https://doi.org/10.1785/0320230037","url":null,"abstract":"Thousands were killed by the 8 September 2023 Mw 6.8 Al Haouz, Morocco, earthquake in the western High Atlas (WHA) Mountains. To identify the faults and fault orientations most likely to host aftershocks and future large earthquakes, regional crustal stress is estimated from focal mechanism inversions, and the associated slip potential of known and suspected active faults is modeled. North–south shortening is accommodated by a mix of reverse, oblique-reverse, and strike-slip motion. As such, many fault orientations are well aligned for slip: steep north-northeast-, south-southwest-, southeast-, or northwest-striking planes, gently (∼15°–50°) dipping east- and west-striking planes, and all orientations between. Nearly all mapped regional faults have high slip potential. By contrast, steep east–west and nearly all north–south faults are relatively stable, although low friction in the anomalously hot lower crust of the WHA, such as due to partial melt, could allow slip on these suboptimal faults as well.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139330204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordan W. Bishop, Matthew M. Haney, David Fee, Robin S. Matoza, Kathleen F. McKee, John J. Lyons
{"title":"Back-Azimuth Estimation of Air-to-Ground Coupled Infrasound from Transverse Coherence Minimization","authors":"Jordan W. Bishop, Matthew M. Haney, David Fee, Robin S. Matoza, Kathleen F. McKee, John J. Lyons","doi":"10.1785/0320230023","DOIUrl":"https://doi.org/10.1785/0320230023","url":null,"abstract":"Abstract We present the transverse coherence minimization method (TCM)—an approach to estimate the back-azimuth of infrasound signals that are recorded on an infrasound microphone and a colocated three-component seismometer. Accurate back-azimuth information is important for a variety of monitoring efforts, but it is currently only available for infrasound arrays and for seismoacoustic sensor pairs separated by 10 s of meters. Our TCM method allows for the analysis of colocated sensor pairs, sensors located within a few meters of each other, which may extend the capabilities of existing seismoacoustic networks and supplement operating infrasound arrays. This approach minimizes the coherence of the transverse component of seismic displacement with the infrasound wave to estimate the infrasound back-azimuth. After developing an analytical model, we investigate seismoacoustic signals from the August 2012 Humming Roadrunner experiment and the 26 May 2021 eruption of Great Sitkin Volcano, Alaska, U.S.A., at the ranges of 6.5–185 km from the source. We discuss back-azimuth estimates and potential sources of deviation (1°–15°), such as local terrain effects or deviation from common analytical models. This practical method complements existing seismoacoustic tools and may be suitable for routine application to signals of interest.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135458743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiuxun Yin, Marcelo A. Soto, Jaime Ramírez, Valey Kamalov, Weiqiang Zhu, Allen Husker, Zhongwen Zhan
{"title":"Real-Data Testing of Distributed Acoustic Sensing for Offshore Earthquake Early Warning","authors":"Jiuxun Yin, Marcelo A. Soto, Jaime Ramírez, Valey Kamalov, Weiqiang Zhu, Allen Husker, Zhongwen Zhan","doi":"10.1785/0320230018","DOIUrl":"https://doi.org/10.1785/0320230018","url":null,"abstract":"Abstract We present a real-data test for offshore earthquake early warning (EEW) with distributed acoustic sensing (DAS) by transforming submarine fiber-optic cable into a dense seismic array. First, we constrain earthquake locations using the arrival-time information recorded by the DAS array. Second, with site effects along the cable calibrated using an independent earthquake, we estimate earthquake magnitudes directly from strain rate amplitudes by applying a scaling relation transferred from onshore DAS arrays. Our results indicate that using this single 50 km offshore DAS array can offer ∼3 s improvement in the alert time of EEW compared to onshore seismic stations. Furthermore, we simulate and demonstrate that multiple DAS arrays extending toward the trench placed along the coast can uniformly improve alert times along a subduction zone by more than 5 s.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"65 10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135705895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olivia Pita-Sllim, C. Chamberlain, John Townend, E. Warren‐Smith
{"title":"Parametric Testing of EQTransformer’s Performance against a High-Quality, Manually Picked Catalog for Reliable and Accurate Seismic Phase Picking","authors":"Olivia Pita-Sllim, C. Chamberlain, John Townend, E. Warren‐Smith","doi":"10.1785/0320230024","DOIUrl":"https://doi.org/10.1785/0320230024","url":null,"abstract":"This study evaluates EQTransformer, a deep learning model, for earthquake detection and phase picking using seismic data from the Southern Alps, New Zealand. Using a robust, independent dataset containing more than 85,000 manual picks from 13 stations spanning almost nine years, we assess EQTransformer’s performance and limitations in a practical application scenario. We investigate key parameters such as overlap and probability threshold and their influences on detection consistency and false positives, respectively. EQTransformer’s probability outputs show a limited correlation with pick accuracy, emphasizing the need for careful interpretation. Our analysis of illustrative signals from three seismic networks highlights challenges of consistently picking first arrivals when reflected or refracted phases are present. We find that an overlap length of 55 s balances detection consistency and computational efficiency, and that a probability threshold of 0.1 balances detection rate and false positives. Our study thus offers insights into EQTransformer’s capabilities and limitations, highlighting the importance of parameter selection for optimal results.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"168 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139327312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Sawi, F. Waldhauser, Benjamin K. Holtzman, Nathan Groebner
{"title":"Detecting Repeating Earthquakes on the San Andreas Fault with Unsupervised Machine Learning of Spectrograms","authors":"T. Sawi, F. Waldhauser, Benjamin K. Holtzman, Nathan Groebner","doi":"10.1785/0320230033","DOIUrl":"https://doi.org/10.1785/0320230033","url":null,"abstract":"Repeating earthquakes—sequences of colocated, quasi-periodic earthquakes of similar size—are widespread along California’s San Andreas fault (SAF) system. Catalogs of repeating earthquakes are vital for studying earthquake source processes, fault properties, and improving seismic hazard models. Here, we introduce an unsupervised machine learning-based method for detecting repeating earthquake sequences (RES) to expand existing RES catalogs or to perform initial, exploratory searches. We implement the “SpecUFEx” algorithm (Holtzman et al., 2018) to reduce earthquake spectrograms into low-dimensional, characteristic fingerprints, and apply hierarchical clustering to group similar fingerprints together independent of location, allowing for a global search for potential RES throughout the data set. We then relocate the potential RES and subject them to the same detection criteria as Waldhauser and Schaff (2021). We apply our method to ∼4000 small (ML 0–3.5) earthquakes located on a 10 km long segment of the creeping SAF and double the number of detected RES, allowing for greater spatial coverage of slip-rate estimations at seismogenic depths. Our method is novel in its ability to detect RES independent of initial locations and is complimentary to existing cross-correlation-based methods, leading to more complete RES catalogs and a better understanding of slip rates at depth.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"306 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139327883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coherent Spatial Variations in the Productivity of Earthquake Sequences in California and Nevada","authors":"D. Trugman, Y. Ben‐Zion","doi":"10.1785/0320230039","DOIUrl":"https://doi.org/10.1785/0320230039","url":null,"abstract":"Earthquakes are clustered in space and time, with individual sequences composed of events linked by stress transfer and triggering mechanisms. On a global scale, variations in the productivity of earthquake sequences—a normalized measure of the number of triggered events—have been observed and associated with regional variations in tectonic setting. Here, we focus on resolving systematic variations in the productivity of crustal earthquake sequences in California and Nevada—the two most seismically active states in the western United States. We apply a well-tested nearest-neighbor algorithm to automatically extract earthquake sequence statistics from a unified 40 yr compilation of regional earthquake catalogs that is complete to M ∼ 2.5. We then compare earthquake sequence productivity to geophysical parameters that may influence earthquake processes, including heat flow, temperature at seismogenic depth, complexity of quaternary faulting, geodetic strain rates, depth to crystalline basement, and faulting style. We observe coherent spatial variations in sequence productivity, with higher values in the Walker Lane of eastern California and Nevada than along the San Andreas fault system in western California. The results illuminate significant correlations between productivity and heat flow, temperature, and faulting that contribute to the understanding and ability to forecast crustal earthquake sequences in the area.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139330553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Yeck, A. Hatem, D. Goldberg, W. Barnhart, Jessica A. Thompson Jobe, D. Shelly, Antonio Villaseñor, H. Benz, P. Earle
{"title":"Rapid Source Characterization of the 2023 Mw 6.8 Al Haouz, Morocco, Earthquake","authors":"W. Yeck, A. Hatem, D. Goldberg, W. Barnhart, Jessica A. Thompson Jobe, D. Shelly, Antonio Villaseñor, H. Benz, P. Earle","doi":"10.1785/0320230040","DOIUrl":"https://doi.org/10.1785/0320230040","url":null,"abstract":"The U.S. Geological Survey (USGS) National Earthquake Information Center (NEIC) estimates source characteristics of significant damaging earthquakes, aiming to place events within their seismotectonic framework. Contextualizing the 8 September 2023, Mw 6.8 Al Haouz, Morocco, earthquake is challenging, because it occurred in an enigmatic region of active surface faulting, and low seismicity yet produced significant damage and loss of life. Here, we present the rapid earthquake source products produced by the USGS NEIC, describing how the source model was derived using both seismic and geodetic observations. Our analysis indicates that the earthquake was the result of oblique-reverse faulting in the lower crust on either a steeply north-dipping fault or a moderately south-dipping fault. Finite-slip models using seismic and geodetic data reveal a compact source, with slip occurring at depths of 15–35 km. The causative fault is not apparent, because the rupture did not break the surface, and it is not possible to definitively attribute the earthquake to a known structure. The earthquake centroid depth of 25 km is noteworthy, because it shows slip extending beyond common estimates of seismogenic depth. This earthquake highlights that the seismogenic processes associated with mountain building in this wide plate boundary region are poorly understood.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139331298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nadine G. Reitman, Richard W. Briggs, William D. Barnhart, Alexandra E. Hatem, Jessica A. Thompson Jobe, Christopher B. DuRoss, Ryan D. Gold, John D. Mejstrik, Camille Collett, Rich D. Koehler, Sinan Akçiz
{"title":"Rapid Surface Rupture Mapping from Satellite Data: The 2023 Kahramanmaraş, Turkey (Türkiye), Earthquake Sequence","authors":"Nadine G. Reitman, Richard W. Briggs, William D. Barnhart, Alexandra E. Hatem, Jessica A. Thompson Jobe, Christopher B. DuRoss, Ryan D. Gold, John D. Mejstrik, Camille Collett, Rich D. Koehler, Sinan Akçiz","doi":"10.1785/0320230029","DOIUrl":"https://doi.org/10.1785/0320230029","url":null,"abstract":"Abstract The 6 February 2023 Kahramanmaraş, Turkey (Türkiye), earthquake sequence produced > 500 km of surface rupture primarily on the left-lateral East Anatolian (~345 km) and Çardak (~175 km) faults. Constraining the length and magnitude of surface displacement on the causative faults is critical for loss estimates, recovery efforts, rapid identification of impacted infrastructure, and fault displacement hazard analysis. To support these efforts, we rapidly mapped the surface rupture from satellite data with support from remote sensing and field teams, and released the results to the public in near-real time. Detailed surface rupture mapping commenced on 7 February and continued as high-resolution (< 1.0 m/pixel) optical images from WorldView satellites (2023 Maxar) became available. We interpreted the initial simplified rupture trace from subpixel offset fields derived from Advanced Land Observation Satellite2 and Sentinel-1A synthetic aperture radar image pairs available on 8 and 10 February, respectively. The mapping was released publicly on 10 February, with frequent updates, and published in final form four months postearthquake (Reitman, Briggs, et al., 2023). This publicly available, rapid mapping helped guide fieldwork and constrained U.S. Geological Survey finite-fault and loss estimate models, as well as stress change estimates and dynamic rupture models.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136161927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Bindi, R. Zaccarelli, Fabrice Cotton, G. Weatherill, Sreeram Reddy Kotha
{"title":"Source Scaling and Ground-Motion Variability along the East Anatolian Fault","authors":"D. Bindi, R. Zaccarelli, Fabrice Cotton, G. Weatherill, Sreeram Reddy Kotha","doi":"10.1785/0320230034","DOIUrl":"https://doi.org/10.1785/0320230034","url":null,"abstract":"We investigate the source scaling and ground-motion variability of 1585 earthquakes with Mw>3 occurring along the East Anatolian fault since 2010. We compile a dataset of 17,691 Fourier amplitude spectra of S waves recorded by 186 stations. A spectral decomposition is applied to isolate the source contribution from propagation and site effects. Source spectra are fit with Brune’s model to estimate seismic moment and corner frequency and to compute the stress drop Δσ. The 10th, 50th, and 90th percentiles of the Δσ distribution are 0.18, 0.51, and 1.69 MPa, respectively, and the average Δσ increases with earthquake magnitude. For the two mainshocks of the 2023 sequence, the estimated Δσ is about 13 MPa, significantly larger than the Δσ of the smaller events. At intermediate and high frequencies, the interevent residuals are correlated with Δσ. When recorded peak ground accelerations and velocities for Mw<6 are compared with the predictions from ground-motion models proposed in the literature, the negative value of the average interevent residuals is consistent with low values of Δσ. Contrariwise, the average residuals for the peak parameter of the Mw 7.8 and 7.5 mainshocks of the 2023 sequence are almost zero, but with distance dependencies.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139327109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}