{"title":"Modeling and stability analysis of hybrid multiple access in the IEEE 802.15.4 protocol","authors":"P. Park, C. Fischione, K. Johansson","doi":"10.1145/2422966.2422970","DOIUrl":"https://doi.org/10.1145/2422966.2422970","url":null,"abstract":"To offer flexible quality of service to several classes of applications, the medium access control (MAC) protocol of IEEE 802.15.4 wireless sensor networks (WSNs) combines the advantages of a random access with contention with a time division multiple access (TDMA) without contention. Understanding reliability, delay, and throughput is essential to characterizing the fundamental limitations of the MAC and optimizing its parameters. Nevertheless, there is not yet a clear investigation of the achievable performance of hybrid MAC. In this article, an analytical framework for modeling the behavior of the hybrid MAC protocol of the IEEE 802.15.4 standard is proposed. The main challenge for an accurate analysis is the coexistence of the stochastic behavior of the random access and the deterministic behavior of the TDMA scheme. The analysis is done in three steps. First, the contention access scheme of the IEEE 802.15.4 exponential back-off process is modeled through an extended Markov chain that takes into account channel, retry limits, acknowledgements, unsaturated traffic, and superframe period. Second, the behavior of the TDMA access scheme is modeled by another Markov chain. Finally, the two chains are coupled to obtain a complete model of the hybrid MAC. By using this model, the network performance in terms of reliability, average packet delay, average queuing delay, and throughput is evaluated through both theoretical analysis and experiments. The protocol has been implemented and evaluated on a testbed with off-the-shelf wireless sensor devices to demonstrate the utility of the analysis in a practical setup. It is established that the probability density function of the number of received packets per superframe follows a Poisson distribution. It is determined under which conditions the guaranteed time slot allocation mechanism of IEEE 802.15.4 is stable. It is shown that the mutual effect between throughput of the random access and the TDMA scheme for a fixed superframe length is critical to maximizing the overall throughput of the hybrid MAC. In high traffic load, the throughput of the random access mechanism dominates over TDMA due to the constrained use of TDMA in the standard. Furthermore, it is shown that the effect of imperfect channels and carrier sensing on system performance heavily depends on the traffic load and limited range of the protocol parameters. Finally, it is argued that the traffic generation model established in this article may be used to design an activation timer mechanism in a modified version of the CSMA/CA algorithm that guarantees a stable network performance.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116946825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Secure ad hoc trust initialization and key management in wireless body area networks","authors":"Ming Li, Shucheng Yu, J. Guttman, W. Lou, K. Ren","doi":"10.1145/2422966.2422975","DOIUrl":"https://doi.org/10.1145/2422966.2422975","url":null,"abstract":"The body area network (BAN) is a key enabling technology in e-healthcare. An important security issue is to establish initial trust relationships among the BAN devices before they are actually deployed and generate necessary shared secret keys to protect the subsequent wireless communications. Due to the ad hoc nature of the BAN and the extreme resource constraints of sensor devices, providing secure as well as efficient and user-friendly trust initialization is a challenging task. Traditional solutions for wireless sensor networks mostly depend on key predistribution, which is unsuitable for a BAN in many ways. In this article, we propose group device pairing (GDP), a user-aided multi-party authenticated key agreement protocol. Through GDP, a group of sensor devices that have no pre-shared secrets establish initial trust by generating various shared secret keys out of an unauthenticated channel. Devices authenticate themselves to each other with the aid of a human user who performs visual verifications. The GDP supports fast batch deployment, addition and revocation of sensor devices, does not rely on any additional hardware device, and is mostly based on symmetric key cryptography. We formally prove the security of the proposed protocols, and we implement GDP on a sensor network testbed and report performance evaluation results.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117122113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Tan, G. Xing, Jinzhu Chen, Wenzhan Song, Renjie Huang
{"title":"Fusion-based volcanic earthquake detection and timing in wireless sensor networks","authors":"R. Tan, G. Xing, Jinzhu Chen, Wenzhan Song, Renjie Huang","doi":"10.1145/2422966.2422974","DOIUrl":"https://doi.org/10.1145/2422966.2422974","url":null,"abstract":"Volcano monitoring is of great interest to public safety and scientific explorations. However, traditional volcanic instrumentation such as broadband seismometers are expensive, power hungry, bulky, and difficult to install. Wireless sensor networks (WSNs) offer the potential to monitor volcanoes on unprecedented spatial and temporal scales. However, current volcanic WSN systems often yield poor monitoring quality due to the limited sensing capability of low-cost sensors and unpredictable dynamics of volcanic activities. In this article, we propose a novel quality-driven approach to achieving real-time, distributed, and long-lived volcanic earthquake detection and timing. By employing novel in-network collaborative signal processing algorithms, our approach can meet stringent requirements on sensing quality (i.e., low false alarm/missing rate, short detection delay, and precise earthquake onset time) at low power consumption. We have implemented our algorithms in TinyOS and conducted extensive evaluation on a testbed of 24 TelosB motes as well as simulations based on real data traces collected during 5.5 months on an active volcano. We show that our approach yields near-zero false alarm/missing rate, less than one second of detection delay, and millisecond precision earthquake onset time while achieving up to six-fold energy reduction over the current data collection approach.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130117318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SenseCode: Network coding for reliable sensor networks","authors":"L. Keller, E. Atsan, K. Argyraki, C. Fragouli","doi":"10.1145/2422966.2422982","DOIUrl":"https://doi.org/10.1145/2422966.2422982","url":null,"abstract":"Designing a communication protocol for sensor networks often involves obtaining the right trade-off between energy efficiency and end-to-end packet error rate. In this article, we show that network coding provides a means to elegantly balance these two goals. We present the design and implementation of SenseCode, a collection protocol for sensor networks—and, to the best of our knowledge, the first such implemented protocol to employ network coding. SenseCode provides a way to gracefully introduce a configurable amount of redundant information into the network, thereby decreasing end-to-end packet error rate in the face of packet loss. We compare SenseCode to the best (to our knowledge) existing alternative and show that it reduces end-to-end packet error rate in highly dynamic environments, while consuming a comparable amount of network resources. We have implemented SenseCode as a TinyOS module and evaluate it through extensive TOSSIM simulations.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"1364 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114116155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Jurdak, Peter Corke, A. Cotillon, Dhinesh Dharman, C. Crossman, Guillaume Salagnac
{"title":"Energy-efficient localization: GPS duty cycling with radio ranging","authors":"R. Jurdak, Peter Corke, A. Cotillon, Dhinesh Dharman, C. Crossman, Guillaume Salagnac","doi":"10.1145/2422966.2422980","DOIUrl":"https://doi.org/10.1145/2422966.2422980","url":null,"abstract":"GPS is a commonly used and convenient technology for determining absolute position in outdoor environments, but its high power consumption leads to rapid battery depletion in mobile devices. An obvious solution is to duty cycle the GPS module, which prolongs the device lifetime at the cost of increased position uncertainty while the GPS is off. This article addresses the trade-off between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty while GPS is off. Empirical GPS and radio contact data from a large-scale animal tracking deployment is used to model node mobility, radio performance, and GPS. Because GPS takes a considerable, and variable, time after powering up before it delivers a good position measurement, we model the GPS behavior through empirical measurements of two GPS modules. These models are then used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose strategies that use RSSI ranging and GPS back-offs to further reduce energy consumption. Results show that our combined strategies can cut node energy consumption by one third while still meeting application-specific positioning criteria.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122345101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robust localization against outliers in wireless sensor networks","authors":"Qingjun Xiao, Kai Bu, Zhijun Wang, Bin Xiao","doi":"10.1145/2422966.2422981","DOIUrl":"https://doi.org/10.1145/2422966.2422981","url":null,"abstract":"In wireless sensor networks, a critical system service is the localization service that determines the locations of geographically distributed sensor nodes. The raw data used by this service are the distance measurements between neighboring nodes and the position knowledge of anchor nodes. However, these raw data may contain outliers that strongly deviate from their true values, which include both the outlier distances and the outlier anchors. These outliers can severely degrade the accuracy of the localization service. Therefore, we need a robust localization algorithm that can reject these outliers. Previous studies in this field mainly focus on enhancing multilateration with outlier rejection ability, since multilateration is a primitive operation used by localization service. But patch merging, a powerful operation for increasing the percentage of localizable nodes in sparse networks, is almost neglected. We thus propose a robust patch merging operation that can reject outliers for both multilateration and patch merging. Based on this operation, we further propose a robust network localization algorithm called RobustLoc. This algorithm makes two major contributions. (1) RobustLoc can achieve a high percentage of localizable nodes in both dense and sparse networks. In contrast, previous methods based on robust multilateration almost always fail in sparse networks with average degrees between 5 and 7. Our experiments show that RobustLoc can localize about 90% of nodes in a sparse network with 5.5 degrees. (2) As far as we know, RobustLoc is the first to uncover the differences between outlier distances and outlier anchors. Our simulations show that RobustLoc can reject colluding outlier anchors reliably in both convex and concave networks.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130952433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Results on finite wireless sensor networks: Connectivity and coverage","authors":"A. Eslami, M. Nekoui, H. Pishro-Nik, F. Fekri","doi":"10.1145/2489253.2489268","DOIUrl":"https://doi.org/10.1145/2489253.2489268","url":null,"abstract":"Many analytic results for the connectivity, coverage, and capacity of wireless networks have been reported for the case where the number of nodes, n, tends to infinity (large-scale networks). The majority of these results have not been extended for small or moderate values of n; whereas in many practical networks, n is not very large. In this article, we consider finite (small-scale) wireless sensor networks. We first show that previous asymptotic results provide poor approximations for such networks. We provide a set of differences between small-scale and large-scale analysis and propose a methodology for analysis of finite sensor networks. Furthermore, we consider two models for such networks: unreliable sensor grids and sensor networks with random node deployment. We provide easily computable expressions for bounds on the coverage and connectivity of these networks. With validation from simulations, we show that the derived analytic expressions give very good estimates of such quantities for finite sensor networks. Our investigation confirms the fact that small-scale networks possess unique characteristics different from their large-scale counterparts, necessitating the development of a new framework for their analysis and design.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"164 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132402087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Containing bogus packet insertion attacks for broadcast authentication in sensor networks","authors":"Kaiqi Xiong, Ronghua Wang, Wenliang Du, P. Ning","doi":"10.1145/2240092.2240094","DOIUrl":"https://doi.org/10.1145/2240092.2240094","url":null,"abstract":"Broadcast is a critical communication primitive in wireless sensor networks. The multihop nature of sensor networks makes it necessary for sensor nodes to forward broadcast messages so that the messages can reach an entire network. Authentication of broadcast messages is an important but challenging problem in sensor networks. Public key cryptography (PKC) has been used recently to address this problem. However, PKC-based authentication techniques are susceptible to bogus packet insertion attacks in which attackers keep broadcasting bogus messages and force resource-constrained sensor nodes to forward such messages. Moreover, because it takes time to do signature verifications, it is impractical for each node to authenticate every received message before forwarding it. In this article, we propose a dynamic window scheme to thwart the aforementioned bogus packet insertion attacks which permits sensor nodes to efficiently broadcast messages. Within this scheme, a sensor node has the ability to determine whether or not to verify an incoming message before forwarding the message. We further study the property of this dynamic window scheme and investigate the best strategy for thwarting bogus packet insertion attacks. We propose three strategies for finding the optimal parameters by an improved additive increase multiplicative decrease (AIMD) window updating function so that the proposed dynamic window scheme can achieve the best overall performance with respect to the authentication and forwarding times of messages. Numerical validations show that our proposed scheme performs very well in terms of energy saving and broadcast delays based on three different metrics, including average authentication delays, the percentage of nodes receiving fake messages, and the percentage of nodes forwarding fake messages.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121455517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Localized policy-based target tracking using wireless sensor networks","authors":"S. Misra, Sweta Singh","doi":"10.1145/2240092.2240101","DOIUrl":"https://doi.org/10.1145/2240092.2240101","url":null,"abstract":"Wireless Sensor Networks (WSN)-based surveillance applications necessitate tracking a target's trajectory with a high degree of precision. Further, target tracking schemes should consider energy consumption in these resource-constrained networks. In this work, we propose an energy-efficient target tracking algorithm, which minimizes the number of nodes in the network that should be activated for tracking the movement of the target. We model the movement of a target based on the Gauss Markov Mobility Model [Camp et al. 2002]. On detecting a target, the cluster head which detects it activates an optimal number of nodes within its cluster, so that these nodes start sensing the target. A Markov Decision Process (MDP)-based framework is designed to adaptively determine the optimal policy for selecting the nodes localized with each cluster. As the distance between the node and the target decreases, the Received Signal Strength (RSS) increases, thereby increasing the precision of the readings of sensing the target at each node. Simulations show that our proposed algorithm is energy-efficient. Also, the accuracy of the tracked trajectory varies between 50% to 1% over time.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"178 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121273519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal multiobjective placement of distributed sensors against moving targets","authors":"Thomas A. Wettergren, R. Costa","doi":"10.1145/2240092.2240095","DOIUrl":"https://doi.org/10.1145/2240092.2240095","url":null,"abstract":"We consider the optimal deployment of a sparse network of sensors against moving targets, under multiple conflicting objectives of search. The sensor networks of interest consist of sensors which perform independent binary detection on a target, and report detections to a central control authority. A multiobjective optimization framework is developed to find optimal trade-offs as a function of sensor deployment, between the conflicting objectives of maximizing the Probability of Successful Search (PSS) and minimizing the Probability of False Search (PFS), in a bounded search region of interest. The search objectives are functions of unknown sensor locations (represented parametrically by a probability density function), given sensor performance parameters, statistical priors on target behavior, and distributed detection criteria. Numerical examples illustrating the utility of this approach for varying target behaviors are given.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124784067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}