{"title":"SenseCode:用于可靠传感器网络的网络编码","authors":"L. Keller, E. Atsan, K. Argyraki, C. Fragouli","doi":"10.1145/2422966.2422982","DOIUrl":null,"url":null,"abstract":"Designing a communication protocol for sensor networks often involves obtaining the right trade-off between energy efficiency and end-to-end packet error rate. In this article, we show that network coding provides a means to elegantly balance these two goals. We present the design and implementation of SenseCode, a collection protocol for sensor networks—and, to the best of our knowledge, the first such implemented protocol to employ network coding. SenseCode provides a way to gracefully introduce a configurable amount of redundant information into the network, thereby decreasing end-to-end packet error rate in the face of packet loss. We compare SenseCode to the best (to our knowledge) existing alternative and show that it reduces end-to-end packet error rate in highly dynamic environments, while consuming a comparable amount of network resources. We have implemented SenseCode as a TinyOS module and evaluate it through extensive TOSSIM simulations.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"1364 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":"{\"title\":\"SenseCode: Network coding for reliable sensor networks\",\"authors\":\"L. Keller, E. Atsan, K. Argyraki, C. Fragouli\",\"doi\":\"10.1145/2422966.2422982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing a communication protocol for sensor networks often involves obtaining the right trade-off between energy efficiency and end-to-end packet error rate. In this article, we show that network coding provides a means to elegantly balance these two goals. We present the design and implementation of SenseCode, a collection protocol for sensor networks—and, to the best of our knowledge, the first such implemented protocol to employ network coding. SenseCode provides a way to gracefully introduce a configurable amount of redundant information into the network, thereby decreasing end-to-end packet error rate in the face of packet loss. We compare SenseCode to the best (to our knowledge) existing alternative and show that it reduces end-to-end packet error rate in highly dynamic environments, while consuming a comparable amount of network resources. We have implemented SenseCode as a TinyOS module and evaluate it through extensive TOSSIM simulations.\",\"PeriodicalId\":263540,\"journal\":{\"name\":\"ACM Trans. Sens. Networks\",\"volume\":\"1364 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"92\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Sens. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2422966.2422982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Sens. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2422966.2422982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SenseCode: Network coding for reliable sensor networks
Designing a communication protocol for sensor networks often involves obtaining the right trade-off between energy efficiency and end-to-end packet error rate. In this article, we show that network coding provides a means to elegantly balance these two goals. We present the design and implementation of SenseCode, a collection protocol for sensor networks—and, to the best of our knowledge, the first such implemented protocol to employ network coding. SenseCode provides a way to gracefully introduce a configurable amount of redundant information into the network, thereby decreasing end-to-end packet error rate in the face of packet loss. We compare SenseCode to the best (to our knowledge) existing alternative and show that it reduces end-to-end packet error rate in highly dynamic environments, while consuming a comparable amount of network resources. We have implemented SenseCode as a TinyOS module and evaluate it through extensive TOSSIM simulations.