针对运动目标的分布式传感器多目标优化布置

Thomas A. Wettergren, R. Costa
{"title":"针对运动目标的分布式传感器多目标优化布置","authors":"Thomas A. Wettergren, R. Costa","doi":"10.1145/2240092.2240095","DOIUrl":null,"url":null,"abstract":"We consider the optimal deployment of a sparse network of sensors against moving targets, under multiple conflicting objectives of search. The sensor networks of interest consist of sensors which perform independent binary detection on a target, and report detections to a central control authority. A multiobjective optimization framework is developed to find optimal trade-offs as a function of sensor deployment, between the conflicting objectives of maximizing the Probability of Successful Search (PSS) and minimizing the Probability of False Search (PFS), in a bounded search region of interest. The search objectives are functions of unknown sensor locations (represented parametrically by a probability density function), given sensor performance parameters, statistical priors on target behavior, and distributed detection criteria. Numerical examples illustrating the utility of this approach for varying target behaviors are given.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Optimal multiobjective placement of distributed sensors against moving targets\",\"authors\":\"Thomas A. Wettergren, R. Costa\",\"doi\":\"10.1145/2240092.2240095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the optimal deployment of a sparse network of sensors against moving targets, under multiple conflicting objectives of search. The sensor networks of interest consist of sensors which perform independent binary detection on a target, and report detections to a central control authority. A multiobjective optimization framework is developed to find optimal trade-offs as a function of sensor deployment, between the conflicting objectives of maximizing the Probability of Successful Search (PSS) and minimizing the Probability of False Search (PFS), in a bounded search region of interest. The search objectives are functions of unknown sensor locations (represented parametrically by a probability density function), given sensor performance parameters, statistical priors on target behavior, and distributed detection criteria. Numerical examples illustrating the utility of this approach for varying target behaviors are given.\",\"PeriodicalId\":263540,\"journal\":{\"name\":\"ACM Trans. Sens. Networks\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Sens. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2240092.2240095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Sens. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2240092.2240095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们考虑了在多个相互冲突的搜索目标下,针对运动目标的稀疏传感器网络的最优部署。感兴趣的传感器网络由对目标执行独立二进制检测的传感器组成,并将检测结果报告给中央控制机构。开发了一个多目标优化框架,以在有限的感兴趣搜索区域内,在最大化成功搜索概率(PSS)和最小化错误搜索概率(PFS)的冲突目标之间找到作为传感器部署函数的最佳权衡。搜索目标是未知传感器位置(由概率密度函数参数化表示)、给定传感器性能参数、目标行为的统计先验和分布式检测标准的函数。最后给出了数值算例,说明了该方法对不同目标行为的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal multiobjective placement of distributed sensors against moving targets
We consider the optimal deployment of a sparse network of sensors against moving targets, under multiple conflicting objectives of search. The sensor networks of interest consist of sensors which perform independent binary detection on a target, and report detections to a central control authority. A multiobjective optimization framework is developed to find optimal trade-offs as a function of sensor deployment, between the conflicting objectives of maximizing the Probability of Successful Search (PSS) and minimizing the Probability of False Search (PFS), in a bounded search region of interest. The search objectives are functions of unknown sensor locations (represented parametrically by a probability density function), given sensor performance parameters, statistical priors on target behavior, and distributed detection criteria. Numerical examples illustrating the utility of this approach for varying target behaviors are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信