{"title":"Analisis Keterkontrolan Model Penyebaran Virus Polio Tipe Vaccine-Derived Polio Virus (VDPV) dan Wild Polio Virus (WPV)","authors":"Sari Cahyaningtias, Rani Kurnia Putri","doi":"10.52166/ujmc.v5i01.1492","DOIUrl":"https://doi.org/10.52166/ujmc.v5i01.1492","url":null,"abstract":"Abstract, Administering vaccines is important as an effort to eradicate polio which is spread by polio virus through physical contact from person to person and exacerbated by an unhealthy sanitation environment. Giving this vaccine does not mean without side effects, administering an oral vaccine (OPV) without proper calculation causes the person given the vaccine to be contract the virus, the truth is, vaccine contains a weakened virus. Therefore, control in administering vaccines is important to do.The polio virus is transmitted to people with weak immune systems and poor sanitation environment, called WPV (Wild Polio Virus). Another impact that is feared from giving OPV is the occurrence of Vaccine Derrived Polio Virus (VDPV), a condition in which the polio virus mutates to become malignant and gives rise to a new type of polio virus. In this study, the mathematical model of the polio virus distribution was formed into a system of non-linear dynamic equations which then carried out a control analysis of the dynamic system of distribution polio by establishing the vaccination rate as the control of the system. The results of the control analysis show that the system can be controlled with the control variables given, namely (1) the level of vaccination of vulnerable children; (2) vaccination rates of vulnerable children without vaccines. \u0000Keywords: equilibrium point, control, vaccination level, polio type VDPV and WPV \u0000 \u0000Abstrak, Pemberian vaksin penting dilakukan sebagai upaya pemberantasan penyakit polio yang disebarkan oleh virus polio melalui kontak fisik dari orang ke orang dan diperparah dengan lingkungan sanitasi yang tidak sehat. Pemberian vaksin ini bukan berarti tanpa efek samping, pemberian dosis vaksin oral (OPV) tanpa perhitungan yang tepat menyebabkan orang yang diberi vaksin dapat terjangkit virus tersebut, karena sejatinya, vaksin berisikan virus yang telah dilemahkan. Oleh sebab itu, kontrol dalam pemberian vaksin, penting untuk dilakukan. Virus polio yang menular ke orang dengan daya tahan tubuh lemah dan lingkungan sanitasi yang buruk, disebut dengan WPV (Wild Polio Virus). Dampak lain yang dikhawatirkan dari pemberian OPV adalah terjadinya Vaccine Derrived Polio Virus (VDPV) yaitu suatu keadaan dimana virus polio bermutasi menjadi ganas dan menimbulkan virus polio tipe baru. Pada penelitian ini, model matematika dari persebaran virus polio ini dibentuk kedalam system persamaan dinamik tak linier yang kemudian dilakukan analisis keterkontrolan dari sistem dinamik persebaran polio tersebut dengan menetapkan tingkat vaksinasi sebagai control dari sistem. Hasil analisis keterkontrolan menunjukkan bahwa system dapat dikontrol dengan variabel kendali yang diberikan, yaitu (1) tingkat vaksinasi anak-anak rentan; (2) tingkat vaksinasi anak-anak rentan tanpa vaksin. \u0000 Keywords: titik kesetimbangan, keterkontrolan, tingkat vaksinasi, polio tipe VDPV dan WPV","PeriodicalId":262941,"journal":{"name":"Unisda Journal of Mathematics and Computer Science (UJMC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117284500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analisis Intervesi Fungsi Step Efek Program Tol-Laut Terhadap Pergerakan Harga Saham TMAS.JK","authors":"Wigid Hariadi","doi":"10.52166/ujmc.v5i01.1484","DOIUrl":"https://doi.org/10.52166/ujmc.v5i01.1484","url":null,"abstract":"Abstract. Intervention analysis is used to evaluate the effect of external events on a time series data. Sea-highway program is one of the leading programs Joko Widodo-Jusuf Kalla in presidential election 2014. So the author want to modeling the effect from Sea-highway programs on stock price movement in the shipping sector, TMAS.JK (Pelayaran Tempuran Emas tbk). After analyzing, proven that it has happened intervention on movement of daily stock price TMAS.JK caused by Sea-highway programs. Intervention I, on 11 August 2014, which was efect as a result of the election of the Joko Widodo-Jusuf kalla pair as President and vice President Republic of Indonesia on 22 july 2014. Intervention II, on 10 november 2014, president Joko Widodo speech in APEC about Sea-highway Program, and offering investment in port construction to foreign country. So that the model of time series analysis that right is intervention analysis model multi input step function, where the model is ARIMA (2,1,0), StepI (b=0, s=2, r=1), StepII (b=3, s=0, r=1). \u0000 Keywords: Intervention Analysis, Multi Input, Step Function, Sea-highway. \u0000 \u0000Abstrak. Analisis intervensi digunakan untuk mengevaluasi efek dari peristiwa eksternal pada suatu data time series. Program Tol-Laut merupakan salah satu program unggulan pasangan Joko Widodo-Jusuf Kalla dalam pemilu 2014. sehingga, penulis ingin memodelkan efek dari Program Tol-Laut terhadap pergerakan harga saham dibidang pelayaran, TMAS.JK (Pelayaran Tempuran Emas tbk). Setelah dilakukan analisis data, terbukti bahwa terjadi intervensi pada pergerakan harga saham harian TMAS.JK yang disebabkan oleh efek dari program Tol-Laut. Dimana intervensi I, pada tanggal 11 Agustus 2014, yang diduga sebagai dampak dari terpilihnya pasangan Joko widodo-Jusuf Kalla sebagai presiden dan wakil presiden Republik Indonesia pada tanggal 22 Juli 2014. Intervensi II, pada tanggal 10 November 2014, pidato Presiden Joko Widodo di forum APEC mengenai program tol laut, dan menawarkan investasi dibidang pembangunan pelabuhan kepada bangsa asing. Sehingga model analisis time series yang tepat adalah model analisis intervensi multi input fungsi step, dimana modelnya adalah ARIMA (2,1,0), StepI (b=0, s=2, r=1), StepII (b=3, s=0, r=1). \u0000Kata kunci: Analisis intervensi, Multi Input, fungsi step, Tol-Laut.","PeriodicalId":262941,"journal":{"name":"Unisda Journal of Mathematics and Computer Science (UJMC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126516063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analisis Lanjut Metode Beda Hingga Eksplisit Untuk Menentukan Harga Opsi","authors":"W. Wahyudi","doi":"10.52166/ujmc.v5i01.1302","DOIUrl":"https://doi.org/10.52166/ujmc.v5i01.1302","url":null,"abstract":"Abstract. Explicit finite difference method is used to approximate a partial differential equation that is applied to determine the option pricing. The results of this study note that the calculation of option pricing using explicit finite difference method is negative when partition N ≥ 25 with a value of -2.21. Thus, the results of the calculation of option pricing are not convergent and away from the results of analyzing the option pricirng (Black-Scholes) solution. This is because one of the three probabilities Bj = 1- σ2j2Δt is negative, namely (-0.12) when j ≥ 12 with S ≥ 16.25 (in units). So this explicit finite difference method cannot be used to determine the option pricing. \u0000Keywords: Option Pricing, Explicit Finite Difference Method \u0000 \u0000Abstrak. Metode beda hingga eksplisit digunakan untuk mengaproksimasi suatu persamaan diferensial pasial yang aplikasikan untuk menentukan harga opsi. Hasil penelitian ini diketahui bahwa perhitungan harga opsi dengan menggunakan metode beda hingga eksplisit bernilai negatif pada saat partisi N ≥ 25 dengan nilai -2,21. Dengan demikian, hasil perhitungan harga opsi tidak konvergen dan menjauhi hasil solusi analitik perhitungan harga opsi (Black-Scholes). Hal ini disebabkan karena salah satu ketiga probabilitas Bj = 1- σ2j2Δt yaitu bernilai negatif yaitu (-0.12) saat j ≥ 12 dengan S ≥ 16.25 (dalam satuan). Sehingga metode beda hingga eksplisit ini tidak dapat digunakan untuk menentukan harga opsi. \u0000 Kata Kunci: Harga Opsi, Metode Beda Hingga Eksplisit.","PeriodicalId":262941,"journal":{"name":"Unisda Journal of Mathematics and Computer Science (UJMC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126800674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model Rantai Pasok Pada Sistem Produksi Menggunakan Petri Net dan Aljabar Max Plus","authors":"Ahmad Afif, Dian Mustofani","doi":"10.52166/ujmc.v5i01.1465","DOIUrl":"https://doi.org/10.52166/ujmc.v5i01.1465","url":null,"abstract":"Abstract. Supply chain production system is a process of coordination and integration of activities ranging from the procurement of goods and services, transforming raw materials into semi-finished goods and finished goods, to distribute to the consumers in an efficient manner. Supply chain analysis is used to regulate the supply of the production system so as not to overload so that it can reduce the costs of the entire production system which includes the costs of processing, transportation and distribution of raw materials, semi-finished goods and finished goods. Petrinet can describe the supply chain model as a dynamic production systems with discrete events with max plus algebra approach to help calculate the length of time in the distribution and production in the supply chain. \u0000Keywords: supply chain, production system, petri net, max plus algebra \u0000 \u0000Abstrak. Rantai pasok pada sistem produksi merupakan proses koordinasi dan integrasi kegiatan mulai dari pengadaan barang dan jasa, mengubah bahan baku menjadi barang setengah jadi dan barang jadi, hingga mendistribusikan kepada konsumen dengan cara efisien. Analisis rantai pasok dipakai untuk mengatur pasokan dari sistem produksi supaya tidak terjadi overload sehingga dapat mengurangi biaya dari keseluruhan sistem produksi yang meliputi biaya pengolahan, transportasi dan distribusi bahan baku, barang setengah jadi dan barang jadi. Petrinet dapat menggambarkan model rantai pasok sebagai sistem produksi yang dinamis dengan kejadian diskrit dengan pendekatan aljabar max plus untuk membantu menghitung lamanya waktu dalam pendistribusian dan produksi dalam rantai pasok. \u0000Kata kunci : rantai pasok, sistem produksi, petri net, aljabar max plus","PeriodicalId":262941,"journal":{"name":"Unisda Journal of Mathematics and Computer Science (UJMC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128204293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analisa Penumpang dengan Metode SARIMA (Studi Kasus: Bandar Udara Raja Haji Fisabilillah)","authors":"Yayuk Setyaning Astutik","doi":"10.52166/ujmc.v5i2.1461","DOIUrl":"https://doi.org/10.52166/ujmc.v5i2.1461","url":null,"abstract":"Raja Haji Fisabilillah International Airport is an airport in Tanjungpinang and it is quite high in service levels for the flow of passengers and goods. Based on the data from Airport Quality Angkasa Pura II, the passengers growth has both decreased and increased in the last 3 (three) years. In 2015, there were 258,936 people in total and has decreased to 246,828 people in 2016 and increased again in 2017 by 351,688 people. Therefore, it is necessary to evaluate the terminal of Raja Haji Fisabilillah International Airport. The methods used are observation and forecasting using the SARIMA. The evaluation and analysis results show that the terminal of Raja Haji Fisabilillah International Airport still meets the applicable standards and passenger movements for the next year 2020 indicate that all equipment facilities for the needs of terminal passengers of Raja Haji Fisabilillah International Airport are still adequate.","PeriodicalId":262941,"journal":{"name":"Unisda Journal of Mathematics and Computer Science (UJMC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124002496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metode Regresi yang Tepat Untuk Meramalkan Permintaan Minyak Solar di Kabupaten Sumbawa","authors":"Koko Hermanto, Fidya Rizqika","doi":"10.52166/ujmc.v5i01.1437","DOIUrl":"https://doi.org/10.52166/ujmc.v5i01.1437","url":null,"abstract":"Abstract. This study aims to find the proper regression method to predict the amount of demand for fuel oil in the form of diesel fuel in Sumbawa Regency. The data needed for this research are data on the amount of monthly diesel oil demand in 2018. The data were analyzed by various regression methods to predict the number of requests as the dependent variable ( ) influenced by the month of demand as a independent variable ( ). The four methods chosen for analysis are linear, quadratic, cubic, exponential and logarithmic regression. The selection of the proper regression method predicts the case in this study based on the coefficient of determination ( ) and the data processing using SPSS. The results of the study show that the right method for forecasting diesel oil demand in 2019 is to use cubic regression methods. \u0000 Keywords: Forecasting, Regression Method, Determinant Coefficient, Solar Oil. \u0000 \u0000Abstrak. Penelitian ini bertujuan untuk menentukan metode regresi yang tepat untuk meramalkan jumlah permintaan bahan bakar minyak (BBM) berupa solar di Kabupaten Sumbawa. Data yang diperlukan untuk penelitian ini adalah data jumlah permintaan minyak solar perbulan pada tahun 2018. Data tersebut dianalisis dengan berbagai metode regresi untuk meramalkan jumlah permintaan sebagai variabel terikat ( ) dipengaruhi oleh bulan permintaan sebagai varibel bebas ( ). Empat metode yang dipilih untuk dianalisis adalah regresi linier, kuadratik, kubik, eksponensial dan logaritmik. Pemilihan metode regresi yang tepat meramalkan kasus pada penelitian ini berdasarkan nilai koefisien determinasi ( ) dan pengolahan datanya menggunakan SPSS. Hasil penelitian menunjukkan bahwa metode yang tepat untuk meramalkan permintaan minyak solar pada tahun 2019 adalah dengan menggunakan metode regresi kubik. \u0000 Keywords: Peramalan, Metode Regresi, Koefisien determinan,Minyak Solar.","PeriodicalId":262941,"journal":{"name":"Unisda Journal of Mathematics and Computer Science (UJMC)","volume":"33 7-8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116477289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimasi Parameter Distribusi Weibull Dan Aplikasinya pada Pengendalian Mutu Dengan Memanfaatkan Kuantil","authors":"C. N. Salsinha","doi":"10.52166/ujmc.v5i01.1473","DOIUrl":"https://doi.org/10.52166/ujmc.v5i01.1473","url":null,"abstract":"Abstract. Weibull distribution is one of the continuous probability distributions. As the other distributions, Weibull distribution is also characterized by Mean, Variance and Moment Generation Function. The advantage of this distribution compared to other distributions is its flexibility, that is, this distribution can change to another distribution such as an exponential distribution depending on the value of the selected distribution parameters, namely scale parameters and form parameters. From the distribution graph, it can be shown that, the flexibility will appear very clear. One application of the Weibull distribution is in statistical process control. Because not all data is normally distributed, the Shewhart control chart cannot be used. One way to solve this problem is that the data is analyzed with Weibull control charts by utilizing quantiles, namely 0.00135, 0.5 and 0.99865. Quantile 0.00135 is the bottom quintile used to form the Lower Control Limit, the Middle Line is the median of the data, which is 0.5 which replaces the average and the last to form the Upper Control Limit the top quintile is 0.99865. By generating 200 data with Weibull distribution, if the data is analyzed by Shewhart control charts then there is a lot of data that is outside the control limit so it will be concluded that the graph is out of control. Therefore, if the data is not from a Normal distribution, the use of Shewhart control charts is not recommended. \u0000 Keywords: Weibull Distribution, Maximum Likelihood Estimation (MLE), Quality Control, Weibull Control Charts \u0000 \u0000Abstrak. Distribusi Weibull merupakan salah satu distribusi probabilitas kontinu. Sama halnya dengan distribusi lainnya, distribusi Weibull pun dicirikan dengan Mean, Variansi dan Fungsi Pembangkit Momen. Kelebihan distribusi ini dibandingkan dengan distribusi lainnya adalah fleksibilitasnya, yaitu distribusi ini dapat berubah menjadi distribusi lain seperti distribusi eksponensial tergantung pada nilai parameter distribusi yang dipilih yaitu parameter skala dan parameter bentuk. Jika dilihat dari grafik distribusinya maka akan tampak sangat jelas fleksibilitas tersebut. Salah satu aplikasi dari distribusi Weibull yaitu dalam pengendalian proses statistik. Oleh karena tidak semua data berdistribusi normal maka grafik pengendali Shewhart tidak dapat digunakan. Salah satu cara menyelesaikan masalah tersebut adalah data dianalisis dengan grafik pengendali Weibull dengan memanfaatkan kuantil-kuantil yaitu 0,00135, 0,5 dan 0,99865. Kuantil 0,00135 adalah kuantil bawah yang digunakan untuk membentuk Batas Pengendali Bawah, Garis Tengah adalah median dari data yaitu 0,5 yang menggantikan rata-rata dan untuk membentuk Batas Pengendali Atas digunakan kuantil atas yaitu 0,99865. Dengan membangkitkan data sebanyak 200 data berdistribusi Weibull, jika data tersebut dianalisis dengan grafik pengendali Shewhart maka terdapat banyak data yang berada diluar batas pengendali sehingga akan disimpulkan bahwa g","PeriodicalId":262941,"journal":{"name":"Unisda Journal of Mathematics and Computer Science (UJMC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134163178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}