{"title":"进一步分析不同的方法,直到明确明确确定选项价格","authors":"W. Wahyudi","doi":"10.52166/ujmc.v5i01.1302","DOIUrl":null,"url":null,"abstract":"Abstract. Explicit finite difference method is used to approximate a partial differential equation that is applied to determine the option pricing. The results of this study note that the calculation of option pricing using explicit finite difference method is negative when partition N ≥ 25 with a value of -2.21. Thus, the results of the calculation of option pricing are not convergent and away from the results of analyzing the option pricirng (Black-Scholes) solution. This is because one of the three probabilities Bj = 1- σ2j2Δt is negative, namely (-0.12) when j ≥ 12 with S ≥ 16.25 (in units). So this explicit finite difference method cannot be used to determine the option pricing. \nKeywords: Option Pricing, Explicit Finite Difference Method \n \nAbstrak. Metode beda hingga eksplisit digunakan untuk mengaproksimasi suatu persamaan diferensial pasial yang aplikasikan untuk menentukan harga opsi. Hasil penelitian ini diketahui bahwa perhitungan harga opsi dengan menggunakan metode beda hingga eksplisit bernilai negatif pada saat partisi N ≥ 25 dengan nilai -2,21. Dengan demikian, hasil perhitungan harga opsi tidak konvergen dan menjauhi hasil solusi analitik perhitungan harga opsi (Black-Scholes). Hal ini disebabkan karena salah satu ketiga probabilitas Bj = 1- σ2j2Δt yaitu bernilai negatif yaitu (-0.12) saat j ≥ 12 dengan S ≥ 16.25 (dalam satuan). Sehingga metode beda hingga eksplisit ini tidak dapat digunakan untuk menentukan harga opsi. \n Kata Kunci: Harga Opsi, Metode Beda Hingga Eksplisit.","PeriodicalId":262941,"journal":{"name":"Unisda Journal of Mathematics and Computer Science (UJMC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Lanjut Metode Beda Hingga Eksplisit Untuk Menentukan Harga Opsi\",\"authors\":\"W. Wahyudi\",\"doi\":\"10.52166/ujmc.v5i01.1302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Explicit finite difference method is used to approximate a partial differential equation that is applied to determine the option pricing. The results of this study note that the calculation of option pricing using explicit finite difference method is negative when partition N ≥ 25 with a value of -2.21. Thus, the results of the calculation of option pricing are not convergent and away from the results of analyzing the option pricirng (Black-Scholes) solution. This is because one of the three probabilities Bj = 1- σ2j2Δt is negative, namely (-0.12) when j ≥ 12 with S ≥ 16.25 (in units). So this explicit finite difference method cannot be used to determine the option pricing. \\nKeywords: Option Pricing, Explicit Finite Difference Method \\n \\nAbstrak. Metode beda hingga eksplisit digunakan untuk mengaproksimasi suatu persamaan diferensial pasial yang aplikasikan untuk menentukan harga opsi. Hasil penelitian ini diketahui bahwa perhitungan harga opsi dengan menggunakan metode beda hingga eksplisit bernilai negatif pada saat partisi N ≥ 25 dengan nilai -2,21. Dengan demikian, hasil perhitungan harga opsi tidak konvergen dan menjauhi hasil solusi analitik perhitungan harga opsi (Black-Scholes). Hal ini disebabkan karena salah satu ketiga probabilitas Bj = 1- σ2j2Δt yaitu bernilai negatif yaitu (-0.12) saat j ≥ 12 dengan S ≥ 16.25 (dalam satuan). Sehingga metode beda hingga eksplisit ini tidak dapat digunakan untuk menentukan harga opsi. \\n Kata Kunci: Harga Opsi, Metode Beda Hingga Eksplisit.\",\"PeriodicalId\":262941,\"journal\":{\"name\":\"Unisda Journal of Mathematics and Computer Science (UJMC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unisda Journal of Mathematics and Computer Science (UJMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52166/ujmc.v5i01.1302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unisda Journal of Mathematics and Computer Science (UJMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52166/ujmc.v5i01.1302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要用显式有限差分法对确定期权定价的偏微分方程进行近似。研究结果表明,当分区N≥25且取值为-2.21时,使用显式有限差分法计算期权定价是负的。因此,期权定价的计算结果不收敛,与期权定价(Black-Scholes)解的分析结果相去甚远。这是因为当j≥12且S≥16.25(单位)时,三个概率Bj = 1- σ2j2Δt中有一个是负的,即(-0.12)。因此,这种显式有限差分法不能用于确定期权定价。关键词:期权定价;显式有限差分法;方法研究了不同类型的微球、微球、微球、微球、微球、微球、微球、微球、微球、微球、微球。Hasil penelitian ini diketahui bahwa perhitungan harga opsi dengan menggunakan方法表明,在N≥25时,dengan naili -2,21。邓根·德米克安,哈希·哈希顿安·哈希顿安·哈希顿安·哈希顿安·哈希顿安·哈希顿安·哈希顿安·哈希顿安·哈希顿安·哈希顿安·哈希顿安·哈希顿安(Black-Scholes)。halini disebabkan karena salah satu ketiga probabilitas Bj = 1- σ2j2Δt yitu bernilai负yitu (-0.12) saat j≥12 dengan S≥16.25 (dalam satuan)。在此基础上,提出了一种新的研究方法。Kata Kunci: Harga Opsi, Metode Beda hinga Eksplisit。
Analisis Lanjut Metode Beda Hingga Eksplisit Untuk Menentukan Harga Opsi
Abstract. Explicit finite difference method is used to approximate a partial differential equation that is applied to determine the option pricing. The results of this study note that the calculation of option pricing using explicit finite difference method is negative when partition N ≥ 25 with a value of -2.21. Thus, the results of the calculation of option pricing are not convergent and away from the results of analyzing the option pricirng (Black-Scholes) solution. This is because one of the three probabilities Bj = 1- σ2j2Δt is negative, namely (-0.12) when j ≥ 12 with S ≥ 16.25 (in units). So this explicit finite difference method cannot be used to determine the option pricing.
Keywords: Option Pricing, Explicit Finite Difference Method
Abstrak. Metode beda hingga eksplisit digunakan untuk mengaproksimasi suatu persamaan diferensial pasial yang aplikasikan untuk menentukan harga opsi. Hasil penelitian ini diketahui bahwa perhitungan harga opsi dengan menggunakan metode beda hingga eksplisit bernilai negatif pada saat partisi N ≥ 25 dengan nilai -2,21. Dengan demikian, hasil perhitungan harga opsi tidak konvergen dan menjauhi hasil solusi analitik perhitungan harga opsi (Black-Scholes). Hal ini disebabkan karena salah satu ketiga probabilitas Bj = 1- σ2j2Δt yaitu bernilai negatif yaitu (-0.12) saat j ≥ 12 dengan S ≥ 16.25 (dalam satuan). Sehingga metode beda hingga eksplisit ini tidak dapat digunakan untuk menentukan harga opsi.
Kata Kunci: Harga Opsi, Metode Beda Hingga Eksplisit.