Alissa Montzka, Nathan Epstein, M. Rannow, T. Chase, Perry Y. Li
{"title":"Experimental Testing of a Variable Displacement Pump/Motor That Uses a Hydro-Mechanically Timed Digital Valving Mechanism to Achieve Partial-Stroke Piston Pressurization (PSPP)","authors":"Alissa Montzka, Nathan Epstein, M. Rannow, T. Chase, Perry Y. Li","doi":"10.1115/fpmc2019-1693","DOIUrl":"https://doi.org/10.1115/fpmc2019-1693","url":null,"abstract":"\u0000 This work describes an efficient means to adjust the power level of an axial piston hydraulic pump/motor. Conventionally, the displacement of a piston pump is varied by changing the stroke length of each piston. Since the losses do not decrease proportionally to the displacement, the efficiency is low at low displacements. Here, with partial-stroke piston pressurization (PSPP), displacement is varied by changing the portion of the piston stroke over which the piston is subjected to high pressure. Since leakage and friction losses drop as the displacement is decreased, higher efficiency is achieved at low displacements with PSPP. While other systems have implemented PSPP with electric or cam-actuated valves, the pump described in this paper is unique in implementing PSPP by way of a simple, robust hydro-mechanical valve system. Experimental testing of a prototype PSPP pump/motor shows that the full load efficiency is maintained even at low displacements.","PeriodicalId":262589,"journal":{"name":"ASME/BATH 2019 Symposium on Fluid Power and Motion Control","volume":"247 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126821462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Tamburrano, A. Plummer, P. Elliott, W. Morris, Sam Page, E. Distaso, R. Amirante, P. Palma
{"title":"2D CFD Analysis of Servovalve Main Stage Internal Leakage","authors":"P. Tamburrano, A. Plummer, P. Elliott, W. Morris, Sam Page, E. Distaso, R. Amirante, P. Palma","doi":"10.1115/fpmc2019-1705","DOIUrl":"https://doi.org/10.1115/fpmc2019-1705","url":null,"abstract":"\u0000 This paper presents research aimed at understanding the effects of geometrical imperfections and tolerances upon the internal leakage occurring around null in the main stages of servovalves. Specifically, a two-dimensional (2D) computational fluid dynamic analysis was used to predict the direct leakage flow as a function of the overlap and clearance between the spool and bushing sleeve, as well as the roundness on the edges of the spool and bushing sleeve. Predictions of direct leakage flow against edge overlap, which have general validity, are provided in the paper for three selected values of the pressure drop. For different values of the pressure drop, analytical correlations can be applied using the data retrieved from these graphs. The analysis shows that the leakage flow is highly affected by the above-mentioned geometrical parameters. As expected, for given values of overlap and radial clearance, the greater the roundness of the edges caused by manufacturing processes or wear, the higher the leakage flow. For low leakage and hence low power loss requirement, the radii on the spool and bushing sleeve as well as the clearance must be maintained as low as possible. In addition, it is well-known that overlap between the spool and its bushing sleeve can help to reduce the leakage flow at null, and the effect of edge roundness on this reduction is now revealed.","PeriodicalId":262589,"journal":{"name":"ASME/BATH 2019 Symposium on Fluid Power and Motion Control","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126060463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ivan Baus, Robert Rahmfeld, Andreas Schumacher, H. Pedersen
{"title":"Systematic Methodology for Reliability Analysis of Components in Axial Piston Units","authors":"Ivan Baus, Robert Rahmfeld, Andreas Schumacher, H. Pedersen","doi":"10.1115/fpmc2019-1620","DOIUrl":"https://doi.org/10.1115/fpmc2019-1620","url":null,"abstract":"\u0000 This paper covers a reliability analysis as a qualitative method, especially focused on axial piston units. The method is based on Fault Tree Analysis (FTA) and results in risk and reliability assessment at the components level. Especially, the development of the reliability assessment as a methodical tool is the core of the paper. Moreover, the FTA is combined with the industrial standard method known as Design Failure Mode Effects Analysis (DFMEA) which is typically used in the development phase of the design. The evaluation and the usability of the FTA methodology is analyzed in connection with field data. Thus, the deviation of the theoretical valuation from the field data was utilized as a success indicator of the method. The analysis of the fault spreading covers the assessment of component faults and links failure states with unit effects. The analysis of the axial piston unit as a system is made on idealized/theoretical design and functional behavior only. Hence, the failure rating and the effect is subsequently applied to determine the fault risk in form of the Risk Priority Number (RPN). The failure modes and effects are based on engineering experience of past decades, supported by existing DFMEAs of axial piston units. Thus, the assessment of the risk priority number is based on previous data, yielding the given severity, occurrence and detection quantification. This approach opens new opportunities of design assessment and the results show a good agreement to the damage accumulation seen in real field data. Furthermore, the connection between theoretical design assessment and field data do support the failure ranking improvement of the DFMEA.","PeriodicalId":262589,"journal":{"name":"ASME/BATH 2019 Symposium on Fluid Power and Motion Control","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122306447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling and Optimization Study of a Tightly Integrated Rotary Electric Motor-Hydraulic Pump","authors":"Garrett R. Bohach, Nishanth, E. Severson, J. Ven","doi":"10.1115/fpmc2019-1626","DOIUrl":"https://doi.org/10.1115/fpmc2019-1626","url":null,"abstract":"\u0000 To meet the growing trend of electrification of mechanical systems, this paper presents a compactly integrated electric motor and hydraulic pump. The proposed application for this machine requires high flow rates at low pressure differentials and four quadrant operation. The hydraulic pump architecture selected for this machine is a radial ball piston pump. An inside impinged version of this architecture allows for efficient filling of the chambers and is radial balanced, both of which allow highspeed operation for increased power density. The radial ball piston pump is less expensive to manufacture and is radially more compact than a standard radial cylindrical piston pump. A model of the pump and the integrated electric motor have been created to study scaling relationships and drive detailed design and optimization. The scaling study considers how displacement is affected by pump diameter, and how the diameter and required torque change with angular velocity. The detailed model considers the effect of valve timing, piston-cylinder clearance, and pump geometry on the efficiency. The model is then exercised in an optimization of the machine parameters.","PeriodicalId":262589,"journal":{"name":"ASME/BATH 2019 Symposium on Fluid Power and Motion Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129525940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energetically Passive Bilateral Teleoperation of a Pneumatic Crawling Robot","authors":"V. Durbha, Perry Y. Li","doi":"10.1115/fpmc2019-1681","DOIUrl":"https://doi.org/10.1115/fpmc2019-1681","url":null,"abstract":"\u0000 This paper presents the control methodology and experimental results for the bilateral haptic tele-operation of a pneumatic actuated crawling robot. The two front legs of a robot are teleoperated via a pair of PHANToM haptic interfaces. The system gives the human operator the impression that he/she is physically moving and positioning the robot legs. As the legs hit the ground, the operator would also feel the reaction force via the haptic feedback provided by the PHANToMs. To reduce the physical effort by the operator, kinematic and power scaling factors are applied. For stable tele-operation, the closed loop system is controlled to behave like a common energetically passive mechanical tool interacting with the human operator (on the PHANToM’s end) and the physical environment (on the Crawler’s end). The control design strategy treats the pneumatic actuators as a two-port nonlinear spring. While the mechanical port of the actuator acts on the mechanical structure of the crawler’s leg, the fluid port of the actuator is controlled to mimic the interaction between the pneumatic spring and the PHANToM, and to achieve co-ordination. The control methodology has been tested experimentally. While performing crawling motion, the RMS error of the robot foot placement error was 7mm, well within the crawler’s foot diameter of 25.4mm.","PeriodicalId":262589,"journal":{"name":"ASME/BATH 2019 Symposium on Fluid Power and Motion Control","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115351121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grey C. Boyce-Erickson, Nathaniel J. Fulbright, J. Voth, T. Chase, Perry Y. Li, J. Ven
{"title":"Mechanical and Hydraulic Actuation Strategies for Mainstage Spool Valves in Hydraulic Motors","authors":"Grey C. Boyce-Erickson, Nathaniel J. Fulbright, J. Voth, T. Chase, Perry Y. Li, J. Ven","doi":"10.1115/fpmc2019-1687","DOIUrl":"https://doi.org/10.1115/fpmc2019-1687","url":null,"abstract":"\u0000 A large variety of options for the internal valves of a hydraulic motor are available. Poppet valves, rotary valves, and port plates are common options, but each have drawbacks such as actuation force, complexity, leakage, or friction. An alternative type that is also common is spool valves. Spool valves require minimal actuation force and have low throttling losses if sized correctly. This paper compares two drive options for a mainstage spool valve: a hydraulic pilot from a rotary valve and mechanical actuation. Dynamic models of the two valve configurations are created to carry out design studies and evaluate the performance of the motor. Compressibility effects, viscous drag, and flow forces are included in the model. Simulations show that the rotary valve pilot operation causes an unacceptable lag in the motion of the spool that cannot be corrected without reducing performance when running in reverse. Furthermore, the rotary pilot stage drive results in the motor timing becoming retarded at higher operating speeds. For these reasons, mechanically actuated valves are preferred over pilot operated valves for hydraulic motors operated bi-directionally or across a wide speed range.","PeriodicalId":262589,"journal":{"name":"ASME/BATH 2019 Symposium on Fluid Power and Motion Control","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128351161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. F. Asmussen, H. Pedersen, Lina Lilleengen, A. Larsen, Thomas Farsakoglou
{"title":"Investigating Fault Detection and Diagnosis in a Hydraulic Pitch System Using a State Augmented EKF-Approach","authors":"M. F. Asmussen, H. Pedersen, Lina Lilleengen, A. Larsen, Thomas Farsakoglou","doi":"10.1115/fpmc2019-1667","DOIUrl":"https://doi.org/10.1115/fpmc2019-1667","url":null,"abstract":"\u0000 Pitch systems impose an important part of today’s wind turbines, where they are both used for power regulation and serve as part of a turbines safety system. Any failure on a pitch system is therefore equal to an increase in downtime of the turbine and should hence be avoided. By implementing a Fault Detection and Diagnosis (FDD) scheme faults may be detected and estimated before resulting in a failure, thus increasing the availability and aiding in the maintenance of the wind turbine. The focus of this paper is therefore on the development of a FDD algorithm to detect leakage and sensor faults in a fluid power pitch system.\u0000 The FDD algorithm is based on a State Augmented Extended Kalman Filter (SAEKF) and a bank of observers, which is designed utilizing an experimentally validated model of a pitch system. The SAEKF is designed to detect and estimate both internal and external leakage faults, while also estimating the unknown external load on the system, and the bank of observers to detect sensor drop-outs. From simulation it is found that the SAEKF may detect both abrupt and evolving internal and external leakages, while being robust towards noise and variation in system parameters. Similar it is found that the scheme is able to detect sensor drop-outs, but is less robust towards this.","PeriodicalId":262589,"journal":{"name":"ASME/BATH 2019 Symposium on Fluid Power and Motion Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128676028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Angerhausen, H. Murrenhoff, B. Persson, K. Schmitz
{"title":"Physically Motivated Simulation of Dynamic Hydraulic Seals","authors":"J. Angerhausen, H. Murrenhoff, B. Persson, K. Schmitz","doi":"10.1115/fpmc2019-1635","DOIUrl":"https://doi.org/10.1115/fpmc2019-1635","url":null,"abstract":"\u0000 Seals are crucial machine elements, for example in hydraulic cylinders. However, especially in regard to dynamic seals, the theoretical understanding of the sealing mechanism is still insufficient. A physically motivated simulation can help to gain a more detailed understanding. In this contribution a elastohydrodynamic (EHD) seal simulation is presented. It is directly implemented in the commercial Software ABAQUS. The fluid film is considered by implementing the Reynolds equation. For a physically motivated simulation Persson’s theory of contact mechanics and rubber friction is used to calculate the solid contribution to the total friction of a hydraulic seal. Simulations for an oscillating motion of a cylinder rod, sealed by an O-ring seal, are carried out for different velocities and pressures. A qualitative comparison between measurement and simulation is provided. Hysteresis effects and the contributions from both, adhesive and viscoelastic friction to the total solid friction are investigated. The physical origin of these effects is discussed in order to provide a detailed understanding of the dynamic sealing mechanism.","PeriodicalId":262589,"journal":{"name":"ASME/BATH 2019 Symposium on Fluid Power and Motion Control","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131467342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lionel Hulttinen, Janne E. M. Koivumäki, J. Mattila
{"title":"Parameter Identification for Model-Based Control of Hydraulically Actuated Open-Chain Manipulators","authors":"Lionel Hulttinen, Janne E. M. Koivumäki, J. Mattila","doi":"10.1115/fpmc2019-1656","DOIUrl":"https://doi.org/10.1115/fpmc2019-1656","url":null,"abstract":"\u0000 In this paper, a nonlinear model-based controller with parameter identification is designed for a rigid open-chain manipulator arm actuated by servovalve-controlled hydraulic cylinders. The arising problem in adopting model-based controllers is how to acquire accurate estimates of system parameters, with limited available information about either the hydraulic actuator parameters or manipulator link inertial parameters. The objective of this study is to identify both the rigid-body parameters of the links and the hydraulic actuator parameters from collected cylinder chamber pressure and joint angle data, while no a priori knowledge of these parameters is available. Same physical plant models are used for control design as well as for parameter identification. Experimental results show that the proposed nonlinear model-based control scheme results in acceptable Cartesian position tracking performance in free-space motion when using the identified parameters.","PeriodicalId":262589,"journal":{"name":"ASME/BATH 2019 Symposium on Fluid Power and Motion Control","volume":"141 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115670629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric D. Norquist, Jonathon E. Slightam, M. Nagurka
{"title":"Modeling, Validation, and Investigation of an Electrohydraulic Crimping Hand Tool","authors":"Eric D. Norquist, Jonathon E. Slightam, M. Nagurka","doi":"10.1115/fpmc2019-1653","DOIUrl":"https://doi.org/10.1115/fpmc2019-1653","url":null,"abstract":"\u0000 Due to their high power density, hydraulic systems are increasingly adapted for human scale devices. For example, commercial and utility electricians use electrohydraulic cutting and crimping tools, rather than human powered tools, to cut and crimp wires that exceed 25mm in diameter. These tools greatly reduce worker-related fatigue and strain-type injuries. To improve electrohydraulic tool technology, there is a need to increase the number of applications from a single battery charge. This paper develops a high fidelity nonlinear lumped parameter model of an electrohydraulic crimping hand tool used by professional electricians. The eleventh-order model can predict tool performance with an average error of 6.9% and 4.4% with respect to the maximum energy consumption and crimp time, respectively. Simulation studies were conducted to investigate reducing the energy consumption of the tool. An independent parameter sweep was performed on the pump piston diameter. The gear ratio was a dependent parameter linked through the maximum motor torque. Increasing the pump piston diameter while increasing the gear ratio was shown to decrease the energy consumption of the tool during crimping applications. Simulations suggest that up to 30% energy can be saved per crimp by increasing the pump piston diameter and gear train ratio.","PeriodicalId":262589,"journal":{"name":"ASME/BATH 2019 Symposium on Fluid Power and Motion Control","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123642846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}