2019 Prognostics and System Health Management Conference (PHM-Qingdao)最新文献

筛选
英文 中文
Data Zeroing Based on Correlation and Linear Interpolation of the Blade Tip-Timing Data 基于叶尖计时数据相关性和线性插值的数据调零
2019 Prognostics and System Health Management Conference (PHM-Qingdao) Pub Date : 2019-10-01 DOI: 10.1109/phm-qingdao46334.2019.8942861
Y. Yu, Yunqiang Wu, Lin Yue
{"title":"Data Zeroing Based on Correlation and Linear Interpolation of the Blade Tip-Timing Data","authors":"Y. Yu, Yunqiang Wu, Lin Yue","doi":"10.1109/phm-qingdao46334.2019.8942861","DOIUrl":"https://doi.org/10.1109/phm-qingdao46334.2019.8942861","url":null,"abstract":"The blade tip-timing has become the most promising technique in the field of rotating blade vibration monitoring with its advantages of non-contacting. However the signal can be disturbed by many factors, especially the noise and drift of the blade vibration displacement curve caused by the centrifugal force changed with rotating speed. The main difficulty to data zeroing is to prevent the peak amplitude from being attenuated or eliminated. In this paper, a method was developed using blade vibration displacement to identify the areas of resonance by calculating the correlation of the data over a number of assembly revolutions from the multi-probe. The blade vibration simulator is carried out to study the relationship between the number of probes and the window width in the correlation. Applying this method into the experimental data, and verify the superiority of the correlation method.","PeriodicalId":259179,"journal":{"name":"2019 Prognostics and System Health Management Conference (PHM-Qingdao)","volume":"24 9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125672459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Task Learning and Attention Mechanism Based Long Short-Term Memory for Temperature Prediction of EMU Bearing 基于多任务学习和注意机制的动车组轴承温度预测
2019 Prognostics and System Health Management Conference (PHM-Qingdao) Pub Date : 2019-10-01 DOI: 10.1109/phm-qingdao46334.2019.8942914
Yaohua Chen, C. Zhang, Ning Zhang, Yiting Chen, Huan Wang
{"title":"Multi-Task Learning and Attention Mechanism Based Long Short-Term Memory for Temperature Prediction of EMU Bearing","authors":"Yaohua Chen, C. Zhang, Ning Zhang, Yiting Chen, Huan Wang","doi":"10.1109/phm-qingdao46334.2019.8942914","DOIUrl":"https://doi.org/10.1109/phm-qingdao46334.2019.8942914","url":null,"abstract":"The traction motor is one of the key components that plays an important role in ensuring the safety and stability of the running EMU (Electric Multiple Units). The running state of the traction motor can be determined through monitoring and predicting the change of EMU bearing temperature. In this paper, we propose a Long Short-Term Memory Neural Network based on Multi-task Learning and Attention Mechanism for the bearing temperature prediction in view of the complex influencing factors of bearing temperature in train operation. The model learns the characteristics of temperature sensors in different positions jointly through multi-task learning. And the Long Short-Term Memory Neural Network based on Attention Mechanism is used to consider the influence of current operating conditions and previous train records on bearing temperature in different degrees. So the model takes various influencing factors and spatial-temporal correlation into consideration. The experimental results with actual EMU datasets show that our method outperforms the baseline approaches.","PeriodicalId":259179,"journal":{"name":"2019 Prognostics and System Health Management Conference (PHM-Qingdao)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125763311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Development of Vibration-Based Health Indexes for Bearing Remaining Useful Life Prediction 基于振动健康指标的轴承剩余使用寿命预测
2019 Prognostics and System Health Management Conference (PHM-Qingdao) Pub Date : 2019-10-01 DOI: 10.1109/phm-qingdao46334.2019.8943002
Xiaohang Jin, Z. Que, Yi Sun
{"title":"Development of Vibration-Based Health Indexes for Bearing Remaining Useful Life Prediction","authors":"Xiaohang Jin, Z. Que, Yi Sun","doi":"10.1109/phm-qingdao46334.2019.8943002","DOIUrl":"https://doi.org/10.1109/phm-qingdao46334.2019.8943002","url":null,"abstract":"Bearing failure can cause their host system shutdown, and even some catastrophic accidents. These will lead to a high maintenance cost and a huge economic loss. Thus, health monitoring and fault prognosis for bearings becomes increasingly important. Developing an effective health index (HI) will do help in these works. Hence, three different HIs are developed by using root mean square, Kolmogorov-Smirnov test, and Mahalanobis distance to reflect bearings’ online health conditions. Four degradation models are constructed to estimate bearings remaining useful life (RUL) by using particle filter algorithm. Bearing life data are used to test the performance of fault prognostic approaches. Results show that all HIs reflect the degradation process of bearing effectively, and the proposed degradation model has the best performance in bearing RUL prediction.","PeriodicalId":259179,"journal":{"name":"2019 Prognostics and System Health Management Conference (PHM-Qingdao)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124537915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Health Indicator Construction Method based on Deep Belief Network for Remaining Useful Life Prediction 基于深度信念网络的剩余使用寿命预测健康指标构建方法
2019 Prognostics and System Health Management Conference (PHM-Qingdao) Pub Date : 2019-10-01 DOI: 10.1109/phm-qingdao46334.2019.8943014
Ruihua Jiao, Kai-xiang Peng, Jie Dong, Kai Zhang, Chuang-jian Zhang
{"title":"A Health Indicator Construction Method based on Deep Belief Network for Remaining Useful Life Prediction","authors":"Ruihua Jiao, Kai-xiang Peng, Jie Dong, Kai Zhang, Chuang-jian Zhang","doi":"10.1109/phm-qingdao46334.2019.8943014","DOIUrl":"https://doi.org/10.1109/phm-qingdao46334.2019.8943014","url":null,"abstract":"Remaining useful life (RUL) prediction is of great importance in a successful prognostics and health management system. The performance of RUL prediction is mainly decided by the development of an appropriate health indicator (HI), which can accurately indicate the degree of degradation of the equipment. Therefore, we proposed an unsupervised method for HI construction based on deep belief network (DBN) by using multisensory historical data. Firstly, DBN is employed to describe the hidden representation corresponding to the healthy state. With the running of the system, its performance will decrease over time and the corresponding potential characteristics tend to be different. The deviation degree of degraded state can be used to establish HI so as to estimate the RUL. Finally, a case study is conducted to validate the effectiveness of the new method, where it can be seen that the new approach achieves better performance compared to traditional methods.","PeriodicalId":259179,"journal":{"name":"2019 Prognostics and System Health Management Conference (PHM-Qingdao)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124589487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Feasibility Study of Online Monitoring Using the Fiber Bragg Grating Sensor for Geared System 光纤光栅传感器在线监测齿轮传动系统的可行性研究
2019 Prognostics and System Health Management Conference (PHM-Qingdao) Pub Date : 2019-10-01 DOI: 10.1109/phm-qingdao46334.2019.8943060
Shenghao Shi, Yongzhi Qu, Jinglin Wang, Liu Hong, J. Dhupia, Zude Zhou
{"title":"Feasibility Study of Online Monitoring Using the Fiber Bragg Grating Sensor for Geared System","authors":"Shenghao Shi, Yongzhi Qu, Jinglin Wang, Liu Hong, J. Dhupia, Zude Zhou","doi":"10.1109/phm-qingdao46334.2019.8943060","DOIUrl":"https://doi.org/10.1109/phm-qingdao46334.2019.8943060","url":null,"abstract":"The gearbox is one of the most common and important components in the drivetrains. Thus, the online monitoring of the dynamic behavior of geared system is crucial for the optimization, diagnosis and prognosis of the drivetrains. The conventional online monitoring system for gearboxes is to use the vibration sensor mounted on the gear housing. However, in the measured housing vibration signal, the dynamic response of the monitored geared pair is usually distorted, which is caused by the complex transfer path of the vibration. Therefore, to advance the art of online monitoring of gearboxes, this work proposes to employ the fiber Bragg grating as the strain sensor to mount near the gear mesh region. The experimental assessment of the feasibility of the fiber Bragg grating based online monitoring system is conducted in a laboratory fixed-axis spur gearbox. To validate and analyze the measurement from the fiber Bragg grating system, a gear mesh model is developed using the finite element method. The comparison between the measurement and theoretical simulation show the proposed fiber Bragg grating based online monitoring system is capable to capture the variation of the root strain during the gear mesh process. This result proves the proposed technique has a promising potential in developing a commercial online monitoring system to measure the subtle dynamic behavior of gearboxes.","PeriodicalId":259179,"journal":{"name":"2019 Prognostics and System Health Management Conference (PHM-Qingdao)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130078687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Similarity-based and Model-based Fusion Prognostics Framework for Remaining Useful Life Prediction 基于相似性和基于模型的剩余使用寿命预测融合预测框架
2019 Prognostics and System Health Management Conference (PHM-Qingdao) Pub Date : 2019-10-01 DOI: 10.1109/phm-qingdao46334.2019.8943006
Xiaochuan Li, D. Mba, Tianran Lin
{"title":"A Similarity-based and Model-based Fusion Prognostics Framework for Remaining Useful Life Prediction","authors":"Xiaochuan Li, D. Mba, Tianran Lin","doi":"10.1109/phm-qingdao46334.2019.8943006","DOIUrl":"https://doi.org/10.1109/phm-qingdao46334.2019.8943006","url":null,"abstract":"In this work, a hybrid prognostic framework which interfaces a model-based prognostic method, namely particle filter, with a similarity-based prognostic method is proposed. The proposed framework consists of automatic determination of predication start point, sensor fusion, and prognostics steps that lead to accurate remaining useful life (RUL) estimations. This approach first applies the canonical variate analysis (CVA) approach for determining the prediction start time and constructing the prognostic health indicators (HIs). The similarity-based method is then employed together with the model-based particle filter (PF) algorithm to improve the predictive performance in terms of reducing the uncertainty of RUL and improving the prediction accuracy. The proposed framework can automatically construct HIs that are suitable for RUL prediction and offer higher prediction accuracy and lower uncertainty boundaries than traditional model-based PF methods. Our proposed approach is successfully applied on aircraft turbofan engines RUL prediction.","PeriodicalId":259179,"journal":{"name":"2019 Prognostics and System Health Management Conference (PHM-Qingdao)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121817283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Bearing Diagnosis Accuracy Comparison Using Convolutional Neural Network with Time/Frequency Domain Signals 基于时频域信号的卷积神经网络轴承诊断精度比较
2019 Prognostics and System Health Management Conference (PHM-Qingdao) Pub Date : 2019-10-01 DOI: 10.1109/phm-qingdao46334.2019.8942879
D. He, W. Guo, Mao He
{"title":"Bearing Diagnosis Accuracy Comparison Using Convolutional Neural Network with Time/Frequency Domain Signals","authors":"D. He, W. Guo, Mao He","doi":"10.1109/phm-qingdao46334.2019.8942879","DOIUrl":"https://doi.org/10.1109/phm-qingdao46334.2019.8942879","url":null,"abstract":"Deep learning is the most attractive topic in the field of machine learning and relevant applications. Owing to the strong learning ability of the convolutional neural network (CNN), it integrates the feature extraction from raw data and classification as a complete learning process and makes the bearing fault diagnosis intelligent. In the published results, the inputs of the CNN may be the raw temporal waveform of vibration, its processed waveform or converted 2D images. In this paper, focusing on the diagnosis accuracy of rolling bearings, a comparative study is conducted among the inputs using the raw temporal waveform, the frequency spectrum, and the envelope spectrum of a vibration signal. First, an appropriate classification model based on the CNN is constructed. Then, experimental data from bearing with real damages are collected and then transformed and converted into some small gray pixel images for training and testing the CNN model. Finally, the classification accuracies using three signals are compared. The results indicate that the diagnosis performances using the above three signals are close when the trained CNN models are stable; among them the model using the frequency spectrum of the vibration signal is a little better than the models using the other two signals, which may be a reference for further investigating the deep learning used in the field of bearing diagnosis.","PeriodicalId":259179,"journal":{"name":"2019 Prognostics and System Health Management Conference (PHM-Qingdao)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121965145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on Fault Diagnosis Method for Speed Sensor of High-Speed Train 高速列车速度传感器故障诊断方法研究
2019 Prognostics and System Health Management Conference (PHM-Qingdao) Pub Date : 2019-10-01 DOI: 10.1109/phm-qingdao46334.2019.8942951
Mengling Wu, Gang Liu, Jinjun Lu, Xiaofeng Geng
{"title":"Research on Fault Diagnosis Method for Speed Sensor of High-Speed Train","authors":"Mengling Wu, Gang Liu, Jinjun Lu, Xiaofeng Geng","doi":"10.1109/phm-qingdao46334.2019.8942951","DOIUrl":"https://doi.org/10.1109/phm-qingdao46334.2019.8942951","url":null,"abstract":"Speed sensors installed on the axes of high-speed train will lead to faults due to the vibration and electromagnetic interference during train operation. At present the braking system can't detect all faults of speed sensor but misdirect the axle lock fault, which affects the safety of train operation. Therefore, this paper proposes an integral intelligent fault diagnosis method for speed sensor of high-speed train brake system, which realizes real-time detection of speed sensor anomalies and accurate location of the axis of the speed sensor fault. Firstly, the traditional principal component analysis method is improved by proposing a comprehensive monitoring statistic to realize real-time fault detection of speed sensor. Then, the modified reconstruction based contribution plot based on the idea of combination maximization is adopted to achieve accurate fault location of speed sensor. In addition, the fault injection experiments are conducted, the results prove the method can diagnose the fault of speed sensor accurately and effectively, and solve the hidden trouble of high-speed train operation.","PeriodicalId":259179,"journal":{"name":"2019 Prognostics and System Health Management Conference (PHM-Qingdao)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121223354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Application and Design of PHM in Aircraft’s Integrated Modular Mission System PHM在飞机集成模块化任务系统中的应用与设计
2019 Prognostics and System Health Management Conference (PHM-Qingdao) Pub Date : 2019-10-01 DOI: 10.1109/phm-qingdao46334.2019.8942896
Wen Jia, Luo Haimin, W. Xiao
{"title":"Application and Design of PHM in Aircraft’s Integrated Modular Mission System","authors":"Wen Jia, Luo Haimin, W. Xiao","doi":"10.1109/phm-qingdao46334.2019.8942896","DOIUrl":"https://doi.org/10.1109/phm-qingdao46334.2019.8942896","url":null,"abstract":"a hierarchical PHM (Prognostic and Health Management) architecture divided into subsystem-level and system-level is proposed with its functions and interfaces at various levels to satisfy PHM requirements of the integrated modular mission system. At the subsystem level, integrated condition monitoring method is developed to monitor the operational conditions of various modules, data buses and functional applications according to their characteristics and requirements. At the system level, a MBR (Model-based Reasoning) engine and its diagnostic knowledge model are developed for the integrated PHM data processing, and a graphical PHM display-control interface and a PHM database are designed to display and store PHM data centrally. The overall design method is applied on a project of the scout’s integrated modular mission system and a PHM subsystem is developed, which can provide integrated health condition monitoring and accurate fault diagnosis for the mission system, as well as the real-time and comprehensive health information for pilot and maintenance personnel.","PeriodicalId":259179,"journal":{"name":"2019 Prognostics and System Health Management Conference (PHM-Qingdao)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122377392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Quick-response Failure Detection Model of GNSS Airborne System GNSS机载系统快速响应故障检测模型
2019 Prognostics and System Health Management Conference (PHM-Qingdao) Pub Date : 2019-10-01 DOI: 10.1109/phm-qingdao46334.2019.8942872
M. Zan, Wang Peng, L. Ruihua, Huang Jianbo
{"title":"A Quick-response Failure Detection Model of GNSS Airborne System","authors":"M. Zan, Wang Peng, L. Ruihua, Huang Jianbo","doi":"10.1109/phm-qingdao46334.2019.8942872","DOIUrl":"https://doi.org/10.1109/phm-qingdao46334.2019.8942872","url":null,"abstract":"The failure detection of the GNSS airborne system can reduce the navigation and positioning failure rate of the GNSS airborne system. While, it takes more longer time to complete the failure detection by traditional failure detection model. Therefore, a novel failure detection model of the GNSS airborne system has been considered and developed by differential equation of gray theory to predict the next arrival time of the heartbeat message when GNSS fails. Furthermore, the reliable message communication can be realized through the prediction result, and failure judgment of the GNSS airborne system, which is defined and utilized as the preliminary judgment basis, can be carried out. Then, the failure detection model of the GNSS airborne system is established in basis on combination logic between rumor heartbeat realization mode and monitoring heartbeat realization mode. Finally the proposed model in this present paper had been simulated and proved the shortest response time, which proves the performance of the model.","PeriodicalId":259179,"journal":{"name":"2019 Prognostics and System Health Management Conference (PHM-Qingdao)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116461968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信