{"title":"Pipelined language model construction for Polish speech recognition","authors":"J. Sas, A. Zolnierek","doi":"10.2478/amcs-2013-0049","DOIUrl":"https://doi.org/10.2478/amcs-2013-0049","url":null,"abstract":"Abstract The aim of works described in this article is to elaborate and experimentally evaluate a consistent method of Language Model (LM) construction for the sake of Polish speech recognition. In the proposed method we tried to take into account the features and specific problems experienced in practical applications of speech recognition in the Polish language, reach inflection, a loose word order and the tendency for short word deletion. The LM is created in five stages. Each successive stage takes the model prepared at the previous stage and modifies or extends it so as to improve its properties. At the first stage, typical methods of LM smoothing are used to create the initial model. Four most frequently used methods of LM construction are here. At the second stage the model is extended in order to take into account words indirectly co-occurring in the corpus. At the next stage, LM modifications are aimed at reduction of short word deletion errors, which occur frequently in Polish speech recognition. The fourth stage extends the model by insertion of words that were not observed in the corpus. Finally the model is modified so as to assure highly accurate recognition of very important utterances. The performance of the methods applied is tested in four language domains.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131013906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximation of fractional positive stable continuous-time linear systems by fractional positive stable discrete-time systems","authors":"T. Kaczorek","doi":"10.2478/amcs-2013-0038","DOIUrl":"https://doi.org/10.2478/amcs-2013-0038","url":null,"abstract":"Abstract Fractional positive asymptotically stable continuous-time linear systems are approximated by fractional positive asymptotically stable discrete-time systems using a linear Padé-type approximation. It is shown that the approximation preserves the positivity and asymptotic stability of the systems. An optional system approximation is also discussed.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121920505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonlinear state observers and extended Kalman filters for battery systems","authors":"A. Rauh, S. Butt, H. Aschemann","doi":"10.2478/amcs-2013-0041","DOIUrl":"https://doi.org/10.2478/amcs-2013-0041","url":null,"abstract":"Abstract The focus of this paper is to develop reliable observer and filtering techniques for finite-dimensional battery models that adequately describe the charging and discharging behaviors. For this purpose, an experimentally validated battery model taken from the literature is extended by a mathematical description that represents parameter variations caused by aging. The corresponding disturbance models account for the fact that neither the state of charge, nor the above-mentioned parameter variations are directly accessible by measurements. Moreover, this work provides a comparison of the performance of different observer and filtering techniques as well as a development of estimation procedures that guarantee a reliable detection of large parameter variations. For that reason, different charging and discharging current profiles of batteries are investigated by numerical simulations. The estimation procedures considered in this paper are, firstly, a nonlinear Luenberger-type state observer with an offline calculated gain scheduling approach, secondly, a continuous-time extended Kalman filter and, thirdly, a hybrid extended Kalman filter, where the corresponding filter gains are computed online.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124677775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A modified convolution and product theorem for the linear canonical transform derived by representation transformation in quantum mechanics","authors":"Navdeep Goel, Kulbir Singh","doi":"10.2478/amcs-2013-0051","DOIUrl":"https://doi.org/10.2478/amcs-2013-0051","url":null,"abstract":"Abstract The Linear Canonical Transform (LCT) is a four parameter class of integral transform which plays an important role in many fields of signal processing. Well-known transforms such as the Fourier Transform (FT), the FRactional Fourier Transform (FRFT), and the FreSnel Transform (FST) can be seen as special cases of the linear canonical transform. Many properties of the LCT are currently known but the extension of FRFTs and FTs still needs more attention. This paper presents a modified convolution and product theorem in the LCT domain derived by a representation transformation in quantum mechanics, which seems a convenient and concise method. It is compared with the existing convolution theorem for the LCT and is found to be a better and befitting proposition. Further, an application of filtering is presented by using the derived results.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128684468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio Yarza, V. Santibáñez, J. Moreno–Valenzuela
{"title":"An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation","authors":"Antonio Yarza, V. Santibáñez, J. Moreno–Valenzuela","doi":"10.2478/amcs-2013-0045","DOIUrl":"https://doi.org/10.2478/amcs-2013-0045","url":null,"abstract":"Abstract This paper deals with two important practical problems in motion control of robot manipulators: the measurement of joint velocities, which often results in noisy signals, and the uncertainty of parameters of the dynamic model. Adaptive output feedback controllers have been proposed in the literature in order to deal with these problems. In this paper, we prove for the first time that Uniform Global Asymptotic Stability (UGAS) can be obtained from an adaptive output feedback tracking controller, if the reference trajectory is selected in such a way that the regression matrix is persistently exciting. The new scheme has been experimentally implemented with the aim of confirming the theoretical results.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128013019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonparametric instrumental variables for identification of block-oriented systems","authors":"G. Mzyk","doi":"10.2478/amcs-2013-0040","DOIUrl":"https://doi.org/10.2478/amcs-2013-0040","url":null,"abstract":"Abstract A combined, parametric-nonparametric identification algorithm for a special case of NARMAX systems is proposed. The parameters of individual blocks are aggregated in one matrix (including mixed products of parameters). The matrix is estimated by an instrumental variables technique with the instruments generated by a nonparametric kernel method. Finally, the result is decomposed to obtain parameters of the system elements. The consistency of the proposed estimate is proved and the rate of convergence is analyzed. Also, the form of optimal instrumental variables is established and the method of their approximate generation is proposed. The idea of nonparametric generation of instrumental variables guarantees that the I.V. estimate is well defined, improves the behaviour of the least-squares method and allows reducing the estimation error. The method is simple in implementation and robust to the correlated noise.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122362171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A fuzzy approach to option pricing in a Levy process setting","authors":"P. Nowak, M. Romaniuk","doi":"10.2478/amcs-2013-0046","DOIUrl":"https://doi.org/10.2478/amcs-2013-0046","url":null,"abstract":"Abstract In this paper the problem of European option valuation in a Levy process setting is analysed. In our model the underlying asset follows a geometric Levy process. The jump part of the log-price process, which is a linear combination of Poisson processes, describes upward and downward jumps in price. The proposed pricing method is based on stochastic analysis and the theory of fuzzy sets.We assume that some parameters of the financial instrument cannot be precisely described and therefore they are introduced to the model as fuzzy numbers. Application of fuzzy arithmetic enables us to consider various sources of uncertainty, not only the stochastic one. To obtain the European call option pricing formula we use the minimal entropy martingale measure and Levy characteristics.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126910420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A simple scheme for semi-recursive identification of Hammerstein system nonlinearity by Haar wavelets","authors":"P. Sliwinski, Z. Hasiewicz, Paweł Wachel","doi":"10.2478/amcs-2013-0039","DOIUrl":"https://doi.org/10.2478/amcs-2013-0039","url":null,"abstract":"Abstract A simple semi-recursive routine for nonlinearity recovery in Hammerstein systems is proposed. The identification scheme is based on the Haar wavelet kernel and possesses a simple and compact form. The convergence of the algorithm is established and the asymptotic rate of convergence (independent of the input density smoothness) is shown for piecewise- Lipschitz nonlinearities. The numerical stability of the algorithm is verified. Simulation experiments for a small and moderate number of input-output data are presented and discussed to illustrate the applicability of the routine.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115357048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of unknown input fractional-order observers for fractional-order systems","authors":"I. N’Doye, M. Darouach, H. Voos, M. Zasadzinski","doi":"10.2478/amcs-2013-0037","DOIUrl":"https://doi.org/10.2478/amcs-2013-0037","url":null,"abstract":"Abstract This paper considers a method of designing fractional-order observers for continuous-time linear fractional-order systems with unknown inputs. Conditions for the existence of these observers are given. Sufficient conditions for the asymptotical stability of fractional-order observer errors with the fractional order α satisfying 0 < α < 2 are derived in terms of linear matrix inequalities. Two numerical examples are given to demonstrate the applicability of the proposed approach, where the fractional order α belongs to 1≤α<2 and 0<α≤1, respectively. A stability analysis of the fractional-order error system is made and it is shown that the fractional-order observers are as stable as their integer order counterpart and guarantee better convergence of the estimation error.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133981089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a matching distance between rooted phylogenetic trees","authors":"D. Bogdanowicz, K. Giaro","doi":"10.2478/amcs-2013-0050","DOIUrl":"https://doi.org/10.2478/amcs-2013-0050","url":null,"abstract":"Abstract The Robinson-Foulds (RF) distance is the most popular method of evaluating the dissimilarity between phylogenetic trees. In this paper, we define and explore in detail properties of the Matching Cluster (MC) distance, which can be regarded as a refinement of the RF metric for rooted trees. Similarly to RF, MC operates on clusters of compared trees, but the distance evaluation is more complex. Using the graph theoretic approach based on a minimum-weight perfect matching in bipartite graphs, the values of similarity between clusters are transformed to the final MC-score of the dissimilarity of trees. The analyzed properties give insight into the structure of the metric space generated by MC, its relations with the Matching Split (MS) distance of unrooted trees and asymptotic behavior of the expected distance between binary n-leaf trees selected uniformly in both MC and MS (Θ(n3/2)).","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125395780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}