{"title":"Design of unknown input fractional-order observers for fractional-order systems","authors":"I. N’Doye, M. Darouach, H. Voos, M. Zasadzinski","doi":"10.2478/amcs-2013-0037","DOIUrl":null,"url":null,"abstract":"Abstract This paper considers a method of designing fractional-order observers for continuous-time linear fractional-order systems with unknown inputs. Conditions for the existence of these observers are given. Sufficient conditions for the asymptotical stability of fractional-order observer errors with the fractional order α satisfying 0 < α < 2 are derived in terms of linear matrix inequalities. Two numerical examples are given to demonstrate the applicability of the proposed approach, where the fractional order α belongs to 1≤α<2 and 0<α≤1, respectively. A stability analysis of the fractional-order error system is made and it is shown that the fractional-order observers are as stable as their integer order counterpart and guarantee better convergence of the estimation error.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amcs-2013-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65
Abstract
Abstract This paper considers a method of designing fractional-order observers for continuous-time linear fractional-order systems with unknown inputs. Conditions for the existence of these observers are given. Sufficient conditions for the asymptotical stability of fractional-order observer errors with the fractional order α satisfying 0 < α < 2 are derived in terms of linear matrix inequalities. Two numerical examples are given to demonstrate the applicability of the proposed approach, where the fractional order α belongs to 1≤α<2 and 0<α≤1, respectively. A stability analysis of the fractional-order error system is made and it is shown that the fractional-order observers are as stable as their integer order counterpart and guarantee better convergence of the estimation error.