Levy过程中期权定价的模糊方法

P. Nowak, M. Romaniuk
{"title":"Levy过程中期权定价的模糊方法","authors":"P. Nowak, M. Romaniuk","doi":"10.2478/amcs-2013-0046","DOIUrl":null,"url":null,"abstract":"Abstract In this paper the problem of European option valuation in a Levy process setting is analysed. In our model the underlying asset follows a geometric Levy process. The jump part of the log-price process, which is a linear combination of Poisson processes, describes upward and downward jumps in price. The proposed pricing method is based on stochastic analysis and the theory of fuzzy sets.We assume that some parameters of the financial instrument cannot be precisely described and therefore they are introduced to the model as fuzzy numbers. Application of fuzzy arithmetic enables us to consider various sources of uncertainty, not only the stochastic one. To obtain the European call option pricing formula we use the minimal entropy martingale measure and Levy characteristics.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A fuzzy approach to option pricing in a Levy process setting\",\"authors\":\"P. Nowak, M. Romaniuk\",\"doi\":\"10.2478/amcs-2013-0046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper the problem of European option valuation in a Levy process setting is analysed. In our model the underlying asset follows a geometric Levy process. The jump part of the log-price process, which is a linear combination of Poisson processes, describes upward and downward jumps in price. The proposed pricing method is based on stochastic analysis and the theory of fuzzy sets.We assume that some parameters of the financial instrument cannot be precisely described and therefore they are introduced to the model as fuzzy numbers. Application of fuzzy arithmetic enables us to consider various sources of uncertainty, not only the stochastic one. To obtain the European call option pricing formula we use the minimal entropy martingale measure and Levy characteristics.\",\"PeriodicalId\":253470,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Sciences\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amcs-2013-0046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amcs-2013-0046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

摘要本文分析了Levy过程设定下欧式期权估值问题。在我们的模型中,标的资产遵循几何列维过程。对数价格过程的跳跃部分是泊松过程的线性组合,描述了价格的上下跳跃。该定价方法基于随机分析和模糊集理论。我们假设金融工具的某些参数无法精确描述,因此它们作为模糊数引入模型。模糊算法的应用使我们能够考虑各种不确定性的来源,而不仅仅是随机的。为了得到欧式看涨期权的定价公式,我们使用了最小熵鞅测度和Levy特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fuzzy approach to option pricing in a Levy process setting
Abstract In this paper the problem of European option valuation in a Levy process setting is analysed. In our model the underlying asset follows a geometric Levy process. The jump part of the log-price process, which is a linear combination of Poisson processes, describes upward and downward jumps in price. The proposed pricing method is based on stochastic analysis and the theory of fuzzy sets.We assume that some parameters of the financial instrument cannot be precisely described and therefore they are introduced to the model as fuzzy numbers. Application of fuzzy arithmetic enables us to consider various sources of uncertainty, not only the stochastic one. To obtain the European call option pricing formula we use the minimal entropy martingale measure and Levy characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信