{"title":"Querying sequential software engineering data","authors":"Chengnian Sun, Haidong Zhang, Jian-Guang Lou, Hongyu Zhang, Qiang Wang, D. Zhang, Siau-Cheng Khoo","doi":"10.1145/2635868.2635902","DOIUrl":"https://doi.org/10.1145/2635868.2635902","url":null,"abstract":"We propose a pattern-based approach to effectively and efficiently analyzing sequential software engineering (SE) data. Different from other types of SE data, sequential SE data preserves unique temporal properties, which cannot be easily analyzed without much programming effort. In order to facilitate the analysis of sequential SE data, we design a sequential pattern query language (SPQL), which specifies the temporal properties based on regular expressions, and is enhanced with variables and statements to store and manipulate matching states. We also propose a query engine to effectively process the SPQL queries. We have applied our approach to analyze two types of SE data, namely bug report history and source code change history. We experiment with 181,213 Eclipse bug reports and 323,989 code revisions of Android. SPQL enables us to explore interesting temporal properties underneath these sequential data with a few lines of query code and low matching overhead. The analysis results can help better under- stand a software process and identify process violations.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129782867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qi Xuan, A. Okano, Premkumar T. Devanbu, V. Filkov
{"title":"Focus-shifting patterns of OSS developers and their congruence with call graphs","authors":"Qi Xuan, A. Okano, Premkumar T. Devanbu, V. Filkov","doi":"10.1145/2635868.2635914","DOIUrl":"https://doi.org/10.1145/2635868.2635914","url":null,"abstract":"Developers in complex, self-organized open-source projects often work on many different files, and over time switch focus between them. Shifting focus can have impact on the software quality and productivity, and is thus an important topic of investigation. In this paper, we study focus shifting patterns (FSPs) of developers by comparing trace data from a dozen open source software (OSS) projects of their longitudinal commit activities and file dependencies from the projects call graphs. Using information theoretic measures of network structure, we find that fairly complex focus-shifting patterns emerge, and FSPs in the same project are more similar to each other. We show that developers tend to shift focus along with, rather than away from, software dependency links described by the call graphs. This tendency becomes weaker as either the interval between successive commits, or the organizational distance between committed files (i.e. directory distance), gets larger. Interestingly, this tendency appears stronger with more productive developers. We hope our study will initiate interest in further understanding of FSPs, which can ultimately help to (1) improve current recommender systems to predict the next focus of developers, and (2) provide insight into better call graph design, so as to facilitate developers' work.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"09 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130565688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Selection and presentation practices for code example summarization","authors":"Annie T. T. Ying, M. Robillard","doi":"10.1145/2635868.2635877","DOIUrl":"https://doi.org/10.1145/2635868.2635877","url":null,"abstract":"Code examples are an important source for answering questions about software libraries and applications. Many usage contexts for code examples require them to be distilled to their essence: e.g., when serving as cues to longer documents, or for reminding developers of a previously known idiom. We conducted a study to discover how code can be summarized and why. As part of the study, we collected 156 pairs of code examples and their summaries from 16 participants, along with over 26 hours of think-aloud verbalizations detailing the decisions of the participants during their summarization activities. Based on a qualitative analysis of this data we elicited a list of practices followed by the participants to summarize code examples and propose empirically-supported hypotheses justifying the use of specific practices. One main finding was that none of the participants exclusively extracted code verbatim for the summaries, motivating abstractive summarization. The results provide a grounded basis for the development of code example summarization and presentation technology.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130663232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mining micro-practices from operational data","authors":"Minghui Zhou, A. Mockus","doi":"10.1145/2635868.2666611","DOIUrl":"https://doi.org/10.1145/2635868.2666611","url":null,"abstract":"Micro-practices are actual (and usually undocumented or incorrectly documented) activity patterns used by individuals or projects to accomplish basic software development tasks, such as writing code, testing, triaging bugs, or mentoring newcomers. The operational data in software repositories presents the tantalizing possibility to discover such fine-scale behaviors and use them to understand and improve software development. We propose a large-scale evidence-based approach to accomplish this by first creating a mirror of the projects in the open source universe. The next step would involve the inductive generalization from in-depth studies of specific projects from one side and the categorization of micro-practices in the entire universe from the other side.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130761543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the localness of software","authors":"Zhaopeng Tu, Z. Su, Premkumar T. Devanbu","doi":"10.1145/2635868.2635875","DOIUrl":"https://doi.org/10.1145/2635868.2635875","url":null,"abstract":"The n-gram language model, which has its roots in statistical natural language processing, has been shown to successfully capture the repetitive and predictable regularities (“naturalness\") of source code, and help with tasks such as code suggestion, porting, and designing assistive coding devices. However, we show in this paper that this natural-language-based model fails to exploit a special property of source code: localness. We find that human-written programs are localized: they have useful local regularities that can be captured and exploited. We introduce a novel cache language model that consists of both an n-gram and an added “cache\" component to exploit localness. We show empirically that the additional cache component greatly improves the n-gram approach by capturing the localness of software, as measured by both cross-entropy and suggestion accuracy. Our model’s suggestion accuracy is actually comparable to a state-of-the-art, semantically augmented language model; but it is simpler and easier to implement. Our cache language model requires nothing beyond lexicalization, and thus is applicable to all programming languages.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134067098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Apposcopy: semantics-based detection of Android malware through static analysis","authors":"Yu Feng, Saswat Anand, Işıl Dillig, A. Aiken","doi":"10.1145/2635868.2635869","DOIUrl":"https://doi.org/10.1145/2635868.2635869","url":null,"abstract":"We present Apposcopy, a new semantics-based approach for identifying a prevalent class of Android malware that steals private user information. Apposcopy incorporates (i) a high-level language for specifying signatures that describe semantic characteristics of malware families and (ii) a static analysis for deciding if a given application matches a malware signature. The signature matching algorithm of Apposcopy uses a combination of static taint analysis and a new form of program representation called Inter-Component Call Graph to efficiently detect Android applications that have certain control- and data-flow properties. We have evaluated Apposcopy on a corpus of real-world Android applications and show that it can effectively and reliably pinpoint malicious applications that belong to certain malware families.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132316199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehdi Mirakhorli, Ahmed E. Fakhry, Artem Grechko, Mateusz Wieloch, J. Cleland-Huang
{"title":"Archie: a tool for detecting, monitoring, and preserving architecturally significant code","authors":"Mehdi Mirakhorli, Ahmed E. Fakhry, Artem Grechko, Mateusz Wieloch, J. Cleland-Huang","doi":"10.1145/2635868.2661671","DOIUrl":"https://doi.org/10.1145/2635868.2661671","url":null,"abstract":"The quality of a software architecture is largely dependent upon the underlying architectural decisions at the framework, tactic, and pattern levels. Decisions to adopt certain solutions determine the extent to which desired qualities such as security, availability, and performance are achieved in the delivered system. In this tool demo, we present our Eclipse plug-in named Archie as a solution for maintaining architectural qualities in the design and code despite long-term maintenance and evolution activities. Archie detects architectural tactics such as heartbeat, resource pooling, and role-based access control (RBAC) in the source code of a project; constructs traceability links between the tactics, design models, rationales and source code; and then uses these to monitor the environment for architecturally significant changes and to keep developers informed of underlying design decisions and their associated rationales.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126515182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dealing with uncertainty in verification of nondeterministic systems","authors":"Yamilet R. Serrano Llerena","doi":"10.1145/2635868.2666598","DOIUrl":"https://doi.org/10.1145/2635868.2666598","url":null,"abstract":"Uncertainty complicates the formal verification of nondeterministic systems. Unpredictable changes and alterations in their environments can lead an invalid verification results and the decrease of confidence degree of these systems. However, current literature provides little account of addressing the uncertainty in formal verification. To address this problem, the goal of this research is to provide a method based on perturbation analysis for probabilistic model checking of nondeterministic systems which are modelled as Markov Decision Processes. And to apply our expected contributions to ubiquitous systems due to inherent presence of environment uncertainty and their resource limitations.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"144 12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129525409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mining preconditions of APIs in large-scale code corpus","authors":"H. Nguyen, Robert Dyer, T. Nguyen, Hridesh Rajan","doi":"10.1145/2635868.2635924","DOIUrl":"https://doi.org/10.1145/2635868.2635924","url":null,"abstract":"Modern software relies on existing application programming interfaces (APIs) from libraries. Formal specifications for the APIs enable many software engineering tasks as well as help developers correctly use them. In this work, we mine large-scale repositories of existing open-source software to derive potential preconditions for API methods. Our key idea is that APIs’ preconditions would appear frequently in an ultra-large code corpus with a large number of API usages, while project-specific conditions will occur less frequently. First, we find all client methods invoking APIs. We then compute a control dependence relation from each call site and mine the potential conditions used to reach those call sites. We use these guard conditions as a starting point to automatically infer the preconditions for each API. We analyzed almost 120 million lines of code from SourceForge and Apache projects to infer preconditions for the standard Java Development Kit (JDK) library. The results show that our technique can achieve high accuracy with recall from 75–80% and precision from 82–84%. We also found 5 preconditions missing from human written specifications. They were all confirmed by a specification expert. In a user study, participants found 82% of the mined preconditions as a good starting point for writing specifications. Using our mining result, we also built a benchmark of more than 4,000 precondition-related bugs.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116575306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
René Just, D. Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, G. Fraser
{"title":"Are mutants a valid substitute for real faults in software testing?","authors":"René Just, D. Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, G. Fraser","doi":"10.1145/2635868.2635929","DOIUrl":"https://doi.org/10.1145/2635868.2635929","url":null,"abstract":"A good test suite is one that detects real faults. Because the set of faults in a program is usually unknowable, this definition is not useful to practitioners who are creating test suites, nor to researchers who are creating and evaluating tools that generate test suites. In place of real faults, testing research often uses mutants, which are artificial faults -- each one a simple syntactic variation -- that are systematically seeded throughout the program under test. Mutation analysis is appealing because large numbers of mutants can be automatically-generated and used to compensate for low quantities or the absence of known real faults. Unfortunately, there is little experimental evidence to support the use of mutants as a replacement for real faults. This paper investigates whether mutants are indeed a valid substitute for real faults, i.e., whether a test suite’s ability to detect mutants is correlated with its ability to detect real faults that developers have fixed. Unlike prior studies, these investigations also explicitly consider the conflating effects of code coverage on the mutant detection rate. Our experiments used 357 real faults in 5 open-source applications that comprise a total of 321,000 lines of code. Furthermore, our experiments used both developer-written and automatically-generated test suites. The results show a statistically significant correlation between mutant detection and real fault detection, independently of code coverage. The results also give concrete suggestions on how to improve mutation analysis and reveal some inherent limitations.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123860131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}