查询顺序软件工程数据

Chengnian Sun, Haidong Zhang, Jian-Guang Lou, Hongyu Zhang, Qiang Wang, D. Zhang, Siau-Cheng Khoo
{"title":"查询顺序软件工程数据","authors":"Chengnian Sun, Haidong Zhang, Jian-Guang Lou, Hongyu Zhang, Qiang Wang, D. Zhang, Siau-Cheng Khoo","doi":"10.1145/2635868.2635902","DOIUrl":null,"url":null,"abstract":"We propose a pattern-based approach to effectively and efficiently analyzing sequential software engineering (SE) data. Different from other types of SE data, sequential SE data preserves unique temporal properties, which cannot be easily analyzed without much programming effort. In order to facilitate the analysis of sequential SE data, we design a sequential pattern query language (SPQL), which specifies the temporal properties based on regular expressions, and is enhanced with variables and statements to store and manipulate matching states. We also propose a query engine to effectively process the SPQL queries. We have applied our approach to analyze two types of SE data, namely bug report history and source code change history. We experiment with 181,213 Eclipse bug reports and 323,989 code revisions of Android. SPQL enables us to explore interesting temporal properties underneath these sequential data with a few lines of query code and low matching overhead. The analysis results can help better under- stand a software process and identify process violations.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Querying sequential software engineering data\",\"authors\":\"Chengnian Sun, Haidong Zhang, Jian-Guang Lou, Hongyu Zhang, Qiang Wang, D. Zhang, Siau-Cheng Khoo\",\"doi\":\"10.1145/2635868.2635902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a pattern-based approach to effectively and efficiently analyzing sequential software engineering (SE) data. Different from other types of SE data, sequential SE data preserves unique temporal properties, which cannot be easily analyzed without much programming effort. In order to facilitate the analysis of sequential SE data, we design a sequential pattern query language (SPQL), which specifies the temporal properties based on regular expressions, and is enhanced with variables and statements to store and manipulate matching states. We also propose a query engine to effectively process the SPQL queries. We have applied our approach to analyze two types of SE data, namely bug report history and source code change history. We experiment with 181,213 Eclipse bug reports and 323,989 code revisions of Android. SPQL enables us to explore interesting temporal properties underneath these sequential data with a few lines of query code and low matching overhead. The analysis results can help better under- stand a software process and identify process violations.\",\"PeriodicalId\":250543,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2635868.2635902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2635868.2635902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了一种基于模式的方法来有效和高效地分析序列软件工程(SE)数据。与其他类型的SE数据不同,顺序SE数据保留独特的时间属性,如果不进行大量编程,就无法轻松分析这些属性。为了便于对序列SE数据进行分析,我们设计了一种序列模式查询语言(SPQL),该语言基于正则表达式指定时序属性,并通过变量和语句进行增强,以存储和操作匹配状态。我们还提出了一个查询引擎来有效地处理SPQL查询。我们已经应用我们的方法来分析两种类型的SE数据,即bug报告历史和源代码更改历史。我们测试了181,213个Eclipse bug报告和323,989个Android代码修订。SPQL使我们能够使用几行查询代码和较低的匹配开销来探索这些顺序数据下有趣的时间属性。分析结果可以帮助更好地理解软件过程并识别过程违规。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Querying sequential software engineering data
We propose a pattern-based approach to effectively and efficiently analyzing sequential software engineering (SE) data. Different from other types of SE data, sequential SE data preserves unique temporal properties, which cannot be easily analyzed without much programming effort. In order to facilitate the analysis of sequential SE data, we design a sequential pattern query language (SPQL), which specifies the temporal properties based on regular expressions, and is enhanced with variables and statements to store and manipulate matching states. We also propose a query engine to effectively process the SPQL queries. We have applied our approach to analyze two types of SE data, namely bug report history and source code change history. We experiment with 181,213 Eclipse bug reports and 323,989 code revisions of Android. SPQL enables us to explore interesting temporal properties underneath these sequential data with a few lines of query code and low matching overhead. The analysis results can help better under- stand a software process and identify process violations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信