Apposcopy: semantics-based detection of Android malware through static analysis

Yu Feng, Saswat Anand, Işıl Dillig, A. Aiken
{"title":"Apposcopy: semantics-based detection of Android malware through static analysis","authors":"Yu Feng, Saswat Anand, Işıl Dillig, A. Aiken","doi":"10.1145/2635868.2635869","DOIUrl":null,"url":null,"abstract":"We present Apposcopy, a new semantics-based approach for identifying a prevalent class of Android malware that steals private user information. Apposcopy incorporates (i) a high-level language for specifying signatures that describe semantic characteristics of malware families and (ii) a static analysis for deciding if a given application matches a malware signature. The signature matching algorithm of Apposcopy uses a combination of static taint analysis and a new form of program representation called Inter-Component Call Graph to efficiently detect Android applications that have certain control- and data-flow properties. We have evaluated Apposcopy on a corpus of real-world Android applications and show that it can effectively and reliably pinpoint malicious applications that belong to certain malware families.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"447","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2635868.2635869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 447

Abstract

We present Apposcopy, a new semantics-based approach for identifying a prevalent class of Android malware that steals private user information. Apposcopy incorporates (i) a high-level language for specifying signatures that describe semantic characteristics of malware families and (ii) a static analysis for deciding if a given application matches a malware signature. The signature matching algorithm of Apposcopy uses a combination of static taint analysis and a new form of program representation called Inter-Component Call Graph to efficiently detect Android applications that have certain control- and data-flow properties. We have evaluated Apposcopy on a corpus of real-world Android applications and show that it can effectively and reliably pinpoint malicious applications that belong to certain malware families.
Apposcopy:通过静态分析基于语义的Android恶意软件检测
我们提出Apposcopy,一种新的基于语义的方法,用于识别窃取私人用户信息的Android恶意软件的流行类别。Apposcopy包含(i)用于指定描述恶意软件家族语义特征的签名的高级语言,以及(ii)用于确定给定应用程序是否与恶意软件签名匹配的静态分析。Apposcopy的签名匹配算法结合了静态污点分析和称为组件间调用图的新形式的程序表示,以有效地检测具有某些控制和数据流属性的Android应用程序。我们已经在真实的Android应用程序语库上对Apposcopy进行了评估,并表明它可以有效可靠地定位属于某些恶意软件家族的恶意应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信