Volume 4: Pipelines, Risers, and Subsea Systems最新文献

筛选
英文 中文
Operational Challenges for Drilling Shallow Water Wells With Dynamically Positioned Rigs 动态定位钻机钻浅水井的作业挑战
Volume 4: Pipelines, Risers, and Subsea Systems Pub Date : 2020-08-03 DOI: 10.1115/omae2020-18322
Rohit Vaidya, M. Sonawane
{"title":"Operational Challenges for Drilling Shallow Water Wells With Dynamically Positioned Rigs","authors":"Rohit Vaidya, M. Sonawane","doi":"10.1115/omae2020-18322","DOIUrl":"https://doi.org/10.1115/omae2020-18322","url":null,"abstract":"\u0000 Traditionally, shallow water wells have been drilled from fixed platforms, jack-ups or moored drilling rigs. Recently there has been increased interest in performing operations on these wells using new generation of Dynamically Positioned (DP) rigs, driven by available capacity of these rigs and environmental regulations that restrict laying anchors on the seabed. Shallow water offshore drilling operations present a set of unique challenges and these challenges are further amplified when operations are performed on older wells with legacy conductor hardware with newer DP vessels and larger BOPs.\u0000 The objective of the paper is to present challenges that occur during drilling in shallow water and discuss mitigation options to make these operations feasible through a series of case studies.\u0000 Key challenges to optimizing riser operability and rig uptime are discussed. Potential modifications to the upper riser stack-up and rig deck structure for maximizing operational uptime are discussed. Riser system weak point assessment is presented along with solutions for mitigating risks in case the wellhead or conductor structural pipe is identified as the weak link. Selection of the drilling rig can have significant impact on wellhead fatigue response. Some criteria for rig selection based on drilling riser and wellhead system performance is presented with the objective of optimizing the fatigue performance of the wellhead and conductor system. Wellhead fatigue monitoring solutions in combination with physical fatigue mitigation options are presented to enable operations for fatigue critical wells.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130535589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wellhead Fatigue Analysis Considering Global and Local Effects 考虑全局和局部影响的井口疲劳分析
Volume 4: Pipelines, Risers, and Subsea Systems Pub Date : 2020-08-03 DOI: 10.1115/omae2020-18854
Filipe A. Rezende, G. Lopes, F. Sousa, J. Sousa, C. E. Fonseca, J. Percy
{"title":"Wellhead Fatigue Analysis Considering Global and Local Effects","authors":"Filipe A. Rezende, G. Lopes, F. Sousa, J. Sousa, C. E. Fonseca, J. Percy","doi":"10.1115/omae2020-18854","DOIUrl":"https://doi.org/10.1115/omae2020-18854","url":null,"abstract":"\u0000 During drilling operations, the wellhead system and top hole casings shall be designed to support dynamic loads from the connected riser through the BOP stack/LMRP. As dynamic motions are associated to stress variations, fatigue becomes a major concern for designers.\u0000 The accumulation of damage at the wellhead and close regions is dependent on several aspects, such as the riser components, the interactions soil-conductor and conductor-surface casing, and of course the environmental conditions. Consequently, fatigue analysis involves complex numerical models and requires the simulation of a huge number of loading cases.\u0000 The present paper aims to estimate the fatigue damage at critical components of the top hole casings and at the wellhead. Two different approaches were investigated. In the first, a global model is analyzed in the time domain (TD), and the Rainflow cycle counting method is used to calculate fatigue damage. The global model includes the drilling riser, wellhead, casings, and interactions between components and with soil. In the second, the same model is analyzed in the frequency domain (FD), and the Dirlik method is used to calculate fatigue damage. Additionally, to allow a better evaluation of stresses at complex geometry regions, forces and moments obtained using the TD methodology were combined with load-to-stress transfer functions, defined by means of a local model and symbolic regression (SR) analysis. The local model includes a detailed 3D model of the pressure housings, and soil-to-casing interaction.\u0000 The obtained results indicate that the pressure housings are not sensitive to fatigue, and also that the analyses performed are feasible, contributing to reduce computational costs in wellhead fatigue assessments.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116523086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Using Machine Learning to Identify Important Parameters for Flow-Induced Vibration 利用机器学习识别流致振动的重要参数
Volume 4: Pipelines, Risers, and Subsea Systems Pub Date : 2020-08-03 DOI: 10.1115/omae2020-18325
Leixin Ma, Themistocles Resvanis, J. Vandiver
{"title":"Using Machine Learning to Identify Important Parameters for Flow-Induced Vibration","authors":"Leixin Ma, Themistocles Resvanis, J. Vandiver","doi":"10.1115/omae2020-18325","DOIUrl":"https://doi.org/10.1115/omae2020-18325","url":null,"abstract":"\u0000 Vortex-induced vibration (VIV) of long flexible cylinders in deep water involves a large number of physical variables, such as Strouhal number, Reynolds number, mass ratio, damping parameter etc. Among all the variables, it is essential to identify the most important parameters for robust VIV response prediction. In this paper, machine learning techniques were applied to iteratively reduce the dimension of VIV related parameters. The crossflow vibration amplitude was chosen as the prediction target. A neural network was used to build nonlinear mappings between a set of up to seventeen input parameters and the predicted crossflow vibration amplitude. The data used in this study came from 38-meter-long bare cylinders of 30 and 80 mm diameters, which were tested in uniform and sheared flows at Marintek in 2011. A baseline prediction using the full set of seventeen parameters gave a prediction error of 12%. The objective was then to determine the minimum number of input parameters that would yield approximately the same level of prediction accuracy as the baseline prediction. Feature selection techniques including both forward greedy feature selection and combinatorial search were implemented in a neural network model with two hidden layers. A prediction error of 13% was achieved using only six of the original seventeen input parameters. The results provide insight as to those parameters which are truly important in the prediction of the VIV of flexible cylinders. It was also shown that the coupling between inline and crossflow vibration has significant influence. It was also confirmed that Reynolds number and the damping parameter, c*, are important for predicting the crossflow response amplitude of long flexible cylinders. While shear parameter was not helpful for response amplitude prediction.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128257807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Numerical Study of Underwater Inflatable Co-Prime Sonar Array (UICSA) 水下充气副主声呐阵(UICSA)的数值研究
Volume 4: Pipelines, Risers, and Subsea Systems Pub Date : 2020-08-03 DOI: 10.1115/omae2020-18393
Yanjun Li, Jordan Thomas, B. Ouyang, T. Su, F. Ahmad
{"title":"Numerical Study of Underwater Inflatable Co-Prime Sonar Array (UICSA)","authors":"Yanjun Li, Jordan Thomas, B. Ouyang, T. Su, F. Ahmad","doi":"10.1115/omae2020-18393","DOIUrl":"https://doi.org/10.1115/omae2020-18393","url":null,"abstract":"\u0000 Underwater Inflatable Co-Prime Sonar Array (UICSA) is a compact sonar array assembly that can be deployed in the ocean then morph into a predetermined length to work. As a sonar array, it is critical to reduce the structural deflection and maintain sensor spacing under external forces like ocean currents. The array, like the mooring system, is affected by ocean currents. In this paper, we conduct the numerical study of the morphed UICSA made of different materials in different current conditions using OrcaFlex. The results can evaluate the performance of different UICSA systems and determine the optimal UICSA design.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128033516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Line Type Optimization of the Flexible Jumper for New Generation Subsea Suspended Manifold Production System 新一代水下悬挂管汇生产系统柔性跳线的线型优化
Volume 4: Pipelines, Risers, and Subsea Systems Pub Date : 2020-08-03 DOI: 10.1115/omae2020-18426
Weizhe An, Zhigang Li, L. Wentao, Yingying Wang, Menglan Duan
{"title":"Line Type Optimization of the Flexible Jumper for New Generation Subsea Suspended Manifold Production System","authors":"Weizhe An, Zhigang Li, L. Wentao, Yingying Wang, Menglan Duan","doi":"10.1115/omae2020-18426","DOIUrl":"https://doi.org/10.1115/omae2020-18426","url":null,"abstract":"\u0000 A new generation of subsea production system with the suspended manifold as the major characteristic was proposed to solve the disadvantages for hard to be discarded and recovered for the traditional subsea manifold fixed in seabed. Here, the flexible jumpers connecting the dry trees in the subsea functional chamber to the suspended manifold, can not only provide enough mooring forces as the mooring system, but also transport oil and gas from dry trees, which is an indispensable part of a complete new generation of subsea production system. So how to optimize the flexible jumpers to guarantee a good hydrodynamic performance is quite essential. In this paper, a steep wave type of flexible jumper is optimized by changing the suspended height, connection width, and position and diameter of the buoyancy block. The result shows that the location and the size of the buoyancy block both have a great influence on the distribution of the mechanical property and the line type of the flexible jumper while the influence of suspended height and connection width is very small. Calculations and analysis demonstrated that changing the position of the buoyancy block has no effect on the maximum tensile force of the flexible jumper, but the farther the buoyancy block is from the seabed, the larger the minimum bending radius of the flexible jumper is. Meanwhile, the larger the diameters of buoyancy block becomes, the larger the maximum tensile force is, and the smaller the minimum bending radius will be.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"137 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124472394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Parallelized Element-by-Element Solver for Structural Analysis of Flexible Pipes Using Finite Macroelements 基于有限宏单元的柔性管道结构分析并行逐单元求解器
Volume 4: Pipelines, Risers, and Subsea Systems Pub Date : 2020-08-03 DOI: 10.1115/omae2020-18010
Fernando Geremias Toni, C. Martins
{"title":"Parallelized Element-by-Element Solver for Structural Analysis of Flexible Pipes Using Finite Macroelements","authors":"Fernando Geremias Toni, C. Martins","doi":"10.1115/omae2020-18010","DOIUrl":"https://doi.org/10.1115/omae2020-18010","url":null,"abstract":"\u0000 Due to the number of layers and their respective geometrical complexities, finite element analyzes of flexible pipes usually require large-scale schemes, with a high number of elements and degrees-of-freedom. If proper precautions are not taken, such as suitable algorithms and numerical methods, the computational costs of these analyzes may become unfeasible to the current computational standards. Finite macroelements are finite elements formulated for the solution of a specific problem considering and taking advantage of its particularities, such as geometry patterns, in order to obtain computational advantages, as reduced number of degrees-of-freedom and ease of problem description. The element-by-element method (EBE) also fits very well in this context, since it is characterized by the elimination of the global stiffness matrix and its memory consumption grows linearly with the number of elements, besides being highly parallelizable. Over the last decades, several works regarding the EBE method were published in the literature, but none of them directly applied to flexible pipes. Due to the contact elements between the layers, problems with flexible pipes are usually characterized by very large matrix-bandwidth, making the implementation of EBE method more challenging, so that its efficiency and scalability are not compromised. Therefore, this work presents a parallelized implementation of an element-by-element architecture for structural analysis of flexible pipes using finite macroelements, consisting of an extension of a previous work from the same authors. New synchronization algorithms were developed, with scalability improvements, the methodology was extended to other finite macroelements and comparisons were made with a well-stablished FEM software, with significant gains in simulation time and memory consumption.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121554226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steel Lazy Wave Riser Optimization Using Artificial Intelligence Tool 利用人工智能工具优化钢懒波立管
Volume 4: Pipelines, Risers, and Subsea Systems Pub Date : 2020-08-03 DOI: 10.1115/omae2020-19308
M. Lal, A. Sebastian, Feng Wang, Xiaohua Lu
{"title":"Steel Lazy Wave Riser Optimization Using Artificial Intelligence Tool","authors":"M. Lal, A. Sebastian, Feng Wang, Xiaohua Lu","doi":"10.1115/omae2020-19308","DOIUrl":"https://doi.org/10.1115/omae2020-19308","url":null,"abstract":"\u0000 Use of steel lazy wave risers has increased as oil and gas developments are happening in deeper waters or in parts of the world with no pipeline infrastructure. These developments utilize FPSO’s with offloading capabilities necessary for these developments. However, due to more severe motions compared to other floating platforms, traditional catenary form of risers are unsuitable for such developments and this is the reason Steel lazy wave risers (SLWR) are required. SLWRs have shown to have better strength and fatigue performance and lower tensions at the hang-off compared to steel catenary risers. A suitable Lazy-Wave form of the catenary riser is achieved by targeted placement of a custom configured buoyancy section. The strength and fatigue performance of steel lazy wave risers are governed by parameters such as length to start of this buoyancy section, length of the buoyancy section, hang-off angle and the buoyancy factor. Achieving these key performance drivers for a SLWR takes several iterations throughout the design process.\u0000 In this paper, genetic algorithm which is an artificial intelligence optimization tool has been used to automate the generation of an optimized configuration of a steel lazy wave riser. This will enable the riser designer to speed up the riser design process to achieve the best location, coverage and size of the buoyancy section. The results that the genetic algorithm routine produces is compared to a parametric study of steel lazy wave risers varying the key performance drivers. The parametric analysis uses a regular wave time domain analysis and captures trends of change in strength and fatigue performance with change in steel lazy wave parameters.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132325042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Validation of Predictions of Wire Stress of Flexible Pipe With Damaged Tensile Armor Wires Under Combined Tension and Bending 受拉铠装钢丝损伤柔性管在拉弯联合作用下钢丝应力预测的验证
Volume 4: Pipelines, Risers, and Subsea Systems Pub Date : 2020-08-03 DOI: 10.1115/omae2020-18525
K. Doynov, Gabriel Rombado, N. Cooke, A. Majed
{"title":"Validation of Predictions of Wire Stress of Flexible Pipe With Damaged Tensile Armor Wires Under Combined Tension and Bending","authors":"K. Doynov, Gabriel Rombado, N. Cooke, A. Majed","doi":"10.1115/omae2020-18525","DOIUrl":"https://doi.org/10.1115/omae2020-18525","url":null,"abstract":"\u0000 The nonlinear kinematic response of a damaged 2.5” flexible pipe under combined tensile and bending cyclic loads is simulated and compared to experimental results. High fidelity finite element model substructures are constructed for intact and broken outer and inner armor wire configurations and assembled in a nonlinear dynamic substructuring (NDS) framework to efficiently simulate the full-scale test configurations. Overall, 12 analysis configurations involving all intact wires, up to 4 broken outer wires, and 2 and 4 broken inner wires combined with 4 broken outer wires are constructed. Each analysis configuration is first preloaded axially and then subject to multiple cycles of (i) pure tension and (ii) combined tension and bending. For each case, tensile armor wire strains are extracted from the simulations and compared to strain measurements from the test. For all cases, numerical predictions and test measurements agree well accurately capturing the redistribution of strains into the adjacent intact wires which result in stress concentration factors.\u0000 This comprehensive demonstration of accurate capture of flexible pipe damaged wire kinematics by high fidelity finite element models and nonlinear simulations has direct applications to flexible pipe integrity management and remnant life assessments. Given that the NDS framework allows highly efficient computation, it is now feasible to execute real-time irregular wave local fatigue simulations with finite element models that include damaged wire data from physical inspections to more accurately predict remnant life.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115489570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigation of the Effects of the In-Line Top-Motion on the Vortex-Induced Vibration Response of a Flexible Riser 管内顶动对柔性隔水管涡激振动响应影响的实验研究
Volume 4: Pipelines, Risers, and Subsea Systems Pub Date : 2020-08-03 DOI: 10.1115/omae2020-18364
Wei Yang, Ma Chuanzhen, K. Zhuang, Zhang Cheng, Lian Shaojie
{"title":"Experimental Investigation of the Effects of the In-Line Top-Motion on the Vortex-Induced Vibration Response of a Flexible Riser","authors":"Wei Yang, Ma Chuanzhen, K. Zhuang, Zhang Cheng, Lian Shaojie","doi":"10.1115/omae2020-18364","DOIUrl":"https://doi.org/10.1115/omae2020-18364","url":null,"abstract":"\u0000 In order to understand the relation between top-motion and VIV of flexible risers, this paper presents an experimental investigation on concomitant vortex-induced vibration and top-motion excitation with flexible risers. The riser can was mounted vertically, with the diameter of 2 cm and the length of 5 m. The responses of amplitude, frequency and other parameters were analyzed in detail under conditions of different excitation amplitude and frequency in uniform flow. It was found that the concomitant VIV and top-motion excitation significantly affects the flexible cylinder response when compared to the pure VIV tests. The amplitude analysis results show that when the reduced velocity is small (less than about 15), the top-motion excitation has an important influence on amplitude of in-line directions. However, the excitation amplitude and frequency of in-line direction have a little influence on amplitude of cross flow direction. The frequency analysis results show that when the reduced velocity is small (less than about 5), the riser motion amplitude is small and irregular in different excitation and when the reduced velocity is large (5 < Ur < 55), the in-line vibration frequency is two times the cross-flow vibration frequency. A strong connection between the top-motion excitation frequency and the vibration frequency was also found. Overall, some phenomena and characteristics observed in the VIV considering top-motion excitation are different from those in classic VIV, which may provide basic reference for the VIV investigation involving the effect of floating bodies.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123851616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frequency Domain Fatigue Analysis for a Unbonded Flexible Riser: Damage Induced by Dynamic Bending 无粘结柔性隔水管频域疲劳分析:动态弯曲损伤
Volume 4: Pipelines, Risers, and Subsea Systems Pub Date : 2020-08-03 DOI: 10.1115/omae2020-18307
Jiabei Yuan, Yucheng Hou, Z. Tan
{"title":"Frequency Domain Fatigue Analysis for a Unbonded Flexible Riser: Damage Induced by Dynamic Bending","authors":"Jiabei Yuan, Yucheng Hou, Z. Tan","doi":"10.1115/omae2020-18307","DOIUrl":"https://doi.org/10.1115/omae2020-18307","url":null,"abstract":"\u0000 The service life of flexible risers is a vital design parameter in offshore field development. The standard approach to calculate fatigue life is the nonlinear time-domain analysis. The approach uses time history of riser responses in local structure assessment to get the fatigue damage of tensile layers. Another approach is the linearized frequency-domain analysis. Instead of using time history of stress and rainflow counting technique, the approach uses stress spectrum and empirical mathematical terms to estimate the fatigue damage. The frequency domain approach is significantly faster. However, due to the whole system being linearized, the latter usually produces different results and is considered to be less accurate than the time domain approach. To address this issue, Baker Hughes previously developed an approach which uses the frequency domain technique as base solution and calibration factors from limited time domain cases. The approach is limited to tensile wires at the end fitting entrance where tension and tensile stress is directly linked. In this paper, a similar approach is proposed to be applied for tensile fatigue at all regions, whose tensile stress are induced by a combination of tension, pressure, bending and friction between layers. Since tensile stress is not directly related to any single riser response, the stress spectrum is predicted by using a transfer function. With the predicted stress spectrum, the fatigue damage of each case is calculated with Dirlik’s method and SN curves.\u0000 The paper summarizes the development of the hybrid frequency domain approach. The fatigue damage of risers from several projects are acquired with both time domain and frequency domain approaches. The approach is significantly faster than traditional time domain approach and produces conservative results. Furthermore, discussions are made on options to improve the approach and reduce the conservatism in the frequency domain fatigue analysis.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"110 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124244502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信