Weizhe An, Zhigang Li, L. Wentao, Yingying Wang, Menglan Duan
{"title":"Line Type Optimization of the Flexible Jumper for New Generation Subsea Suspended Manifold Production System","authors":"Weizhe An, Zhigang Li, L. Wentao, Yingying Wang, Menglan Duan","doi":"10.1115/omae2020-18426","DOIUrl":null,"url":null,"abstract":"\n A new generation of subsea production system with the suspended manifold as the major characteristic was proposed to solve the disadvantages for hard to be discarded and recovered for the traditional subsea manifold fixed in seabed. Here, the flexible jumpers connecting the dry trees in the subsea functional chamber to the suspended manifold, can not only provide enough mooring forces as the mooring system, but also transport oil and gas from dry trees, which is an indispensable part of a complete new generation of subsea production system. So how to optimize the flexible jumpers to guarantee a good hydrodynamic performance is quite essential. In this paper, a steep wave type of flexible jumper is optimized by changing the suspended height, connection width, and position and diameter of the buoyancy block. The result shows that the location and the size of the buoyancy block both have a great influence on the distribution of the mechanical property and the line type of the flexible jumper while the influence of suspended height and connection width is very small. Calculations and analysis demonstrated that changing the position of the buoyancy block has no effect on the maximum tensile force of the flexible jumper, but the farther the buoyancy block is from the seabed, the larger the minimum bending radius of the flexible jumper is. Meanwhile, the larger the diameters of buoyancy block becomes, the larger the maximum tensile force is, and the smaller the minimum bending radius will be.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Pipelines, Risers, and Subsea Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A new generation of subsea production system with the suspended manifold as the major characteristic was proposed to solve the disadvantages for hard to be discarded and recovered for the traditional subsea manifold fixed in seabed. Here, the flexible jumpers connecting the dry trees in the subsea functional chamber to the suspended manifold, can not only provide enough mooring forces as the mooring system, but also transport oil and gas from dry trees, which is an indispensable part of a complete new generation of subsea production system. So how to optimize the flexible jumpers to guarantee a good hydrodynamic performance is quite essential. In this paper, a steep wave type of flexible jumper is optimized by changing the suspended height, connection width, and position and diameter of the buoyancy block. The result shows that the location and the size of the buoyancy block both have a great influence on the distribution of the mechanical property and the line type of the flexible jumper while the influence of suspended height and connection width is very small. Calculations and analysis demonstrated that changing the position of the buoyancy block has no effect on the maximum tensile force of the flexible jumper, but the farther the buoyancy block is from the seabed, the larger the minimum bending radius of the flexible jumper is. Meanwhile, the larger the diameters of buoyancy block becomes, the larger the maximum tensile force is, and the smaller the minimum bending radius will be.