XenotransplantationPub Date : 2023-09-01Epub Date: 2023-08-24DOI: 10.1111/xen.12815
Huybert Groenendaal, Solenne Costard, Reid Ballard, Stephen Bienhoff, Diana C Challen, Brandon J Dominguez, Douglas R Kern, Dan Miller, Jeske Noordergraaf, Larisa Rudenko, Henk-Jan Schuurman, Tom Spizzo, Matthew Sturos, Bill Zollers, Jay A Fishman
{"title":"Expert opinion on the identification, risk assessment, and mitigation of microorganisms and parasites relevant to xenotransplantation products from pigs.","authors":"Huybert Groenendaal, Solenne Costard, Reid Ballard, Stephen Bienhoff, Diana C Challen, Brandon J Dominguez, Douglas R Kern, Dan Miller, Jeske Noordergraaf, Larisa Rudenko, Henk-Jan Schuurman, Tom Spizzo, Matthew Sturos, Bill Zollers, Jay A Fishman","doi":"10.1111/xen.12815","DOIUrl":"10.1111/xen.12815","url":null,"abstract":"<p><p>Xenotransplantation has the potential to address shortages of organs available for clinical transplantation, but concerns exist regarding potential risks posed by porcine microorganisms and parasites (MP) to the health of human recipients. In this study, a risk-based framework was developed, and expert opinion was elicited to evaluate porcine MP based on swine exposure and risk to human health. Experts identified 255 MP to include in the risk assessment. These were rated by experts for five criteria regarding potential swine exposure in the USA and human health risks. MP were subsequently categorized into three risk mitigation groups according to pre-defined rules: disqualifying porcine MP (due to their pathogenic potential, n = 130); non-disqualifying porcine MP (still relevant to consider for biosecurity or monitoring efforts, n = 40); and alert/watch list (not reported in the USA or MP not in swine, n = 85). Most disqualifying (n = 126) and non-disqualifying (n = 36) porcine MP can effectively be eliminated with high biosecurity programs. This approach supports surveillance and risk mitigation strategies for porcine MP in swine produced for xenotransplantation, such as documentation of freedom from porcine MP, or use of porcine MP screening, monitoring, or elimination options. To the authors' knowledge, this is the first effort to comprehensively identify all relevant porcine MP systematically and transparently evaluate the risk of infection of both donor animals and immunosuppressed human recipients, and the potential health impacts for immunosuppressed human recipients from infected xenotransplantation products from pigs.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":" ","pages":"e12815"},"PeriodicalIF":3.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10067984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
XenotransplantationPub Date : 2023-09-01Epub Date: 2023-07-26DOI: 10.1111/xen.12814
Kyo Won Lee, Sean S W Park, Dong Suk Kim, Kimyung Choi, Joohyun Shim, Jihun Kim, Sung Joo Kim, Jae Berm Park
{"title":"Auxiliary liver xenotransplantation technique in a transgenic pig-to-non-human primate model: A surgical approach to prolong survival.","authors":"Kyo Won Lee, Sean S W Park, Dong Suk Kim, Kimyung Choi, Joohyun Shim, Jihun Kim, Sung Joo Kim, Jae Berm Park","doi":"10.1111/xen.12814","DOIUrl":"10.1111/xen.12814","url":null,"abstract":"<p><p>Xenotransplantation using pigs' liver offers a potentially alternative method to overcome worldwide donor shortage, or more importantly as a bridge to allotransplantation. However, it has been challenged by profound thrombocytopenia and fatal coagulopathy in non-human primate models. Here we suggest that a left auxiliary technique can be a useful method to achieve extended survival of the xenograft. Fifteen consecutive liver xenotransplants were carried out in a pig-to-cynomolgus model. Right auxiliary technique was implemented in two cases, orthotopic in eight cases, and left auxiliary in five cases. None of the right auxiliary recipients survived after surgery due to hemorrhage during complex dissection between the primate's right lobe and inferior vena cava. Orthotopic recipients survived less than 7 days secondary to profound thrombocytopenia and coagulopathy. Two out of five left auxiliary xenotransplants survived more than 3 weeks without uncontrolled thrombocytopenia or anemia, with one of them surviving 34 days, the longest graft survival reported to date. Left auxiliary xenotransplant is a feasible approach in non-human primate experiments, and the feared risk of thrombocytopenia and coagulopathy can be minimized. This may allow for longer evaluation of the xenograft and help better understand histopathological and immunological changes that occur following liver xenotransplantation.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":" ","pages":"e12814"},"PeriodicalIF":3.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9870619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anastasia Milusev, Jianfang Ren, Alain Despont, Jane Shaw, Matthias Längin, Martin Bender, Jan-Michael Abicht, Maren Mokelke, Julia Radan, Elisabeth Neumann, Elisabeth Kemter, Nikolai Klymiuk, David Ayares, Eckhard Wolf, Bruno Reichart, Nicoletta Sorvillo, Robert Rieben
{"title":"Glycocalyx dynamics and the inflammatory response of genetically modified porcine endothelial cells.","authors":"Anastasia Milusev, Jianfang Ren, Alain Despont, Jane Shaw, Matthias Längin, Martin Bender, Jan-Michael Abicht, Maren Mokelke, Julia Radan, Elisabeth Neumann, Elisabeth Kemter, Nikolai Klymiuk, David Ayares, Eckhard Wolf, Bruno Reichart, Nicoletta Sorvillo, Robert Rieben","doi":"10.1111/xen.12820","DOIUrl":"10.1111/xen.12820","url":null,"abstract":"<p><p>Xenotransplantation is a promising approach to reduce organ shortage, while genetic modification of donor pigs has significantly decreased the immunogenic burden of xenotransplants, organ rejection is still a hurdle. Genetically modified pig organs are used in xenotransplantation research, and the first clinical pig-to-human heart transplantation was performed in 2022. However, the impact of genetic modification has not been investigated on a cellular level yet. Endothelial cells (EC) and their sugar-rich surface known as the glycocalyx are the first barrier encountering the recipient's immune system, making them a target for rejection. We have previously shown that wild type venous but not arterial EC were protected against heparan sulfate (HS) shedding after activation with human serum or human tumor necrosis factor alpha (TNF𝛼). Using a 2D microfluidic system we investigated the glycocalyx dynamics of genetically modified porcine arterial and venous EC (Gal𝛼1,3 Gal knock-out, transgenic for human CD46 and thrombomodulin, GTKO/hCD46/hTM) after activation with human serum or human TNF𝛼. Interestingly, we observed that GTKO/hCD46/hTM arterial cells, additionally to venous cells, do not shed HS. Unscathed HS on GTKO/hCD46/hTM EC correlated with reduced complement deposition, suggesting that protection against complement activation contributes to maintaining an intact glycocalyx layer on arterial EC. This protection was lost on GTKO/hCD46/hTM cells after simultaneous perfusion with human serum and human TNF𝛼. HS shedding on arterial cells and increased complement deposition on both arterial and venous cells was observed. These findings suggest that GTKO/hCD46/hTM EC revert to a proinflammatory phenotype in an inflammatory xenotransplantation setting, potentially favoring transplant rejection.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":"30 5","pages":"e12820"},"PeriodicalIF":3.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41149992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
XenotransplantationPub Date : 2023-09-01Epub Date: 2023-08-07DOI: 10.1111/xen.12819
Maria Malyukov, Evgeny Gelfgat, Gerard Ruiz-Babot, Janine Schmid, Susann Lehmann, Giatgen Spinas, Felix Beuschlein, Constanze Hantel, Nicole Reisch, Peter P Nawroth, Stefan R Bornstein, Charlotte Steenblock, Barbara Ludwig
{"title":"Transplantation of porcine adrenal spheroids for the treatment of adrenal insufficiency.","authors":"Maria Malyukov, Evgeny Gelfgat, Gerard Ruiz-Babot, Janine Schmid, Susann Lehmann, Giatgen Spinas, Felix Beuschlein, Constanze Hantel, Nicole Reisch, Peter P Nawroth, Stefan R Bornstein, Charlotte Steenblock, Barbara Ludwig","doi":"10.1111/xen.12819","DOIUrl":"10.1111/xen.12819","url":null,"abstract":"<p><p>Primary adrenal insufficiency is a life-threatening disorder, which requires lifelong hormone replacement therapy. Transplantation of xenogeneic adrenal cells is a potential alternative approach for the treatment of adrenal insufficiency. For a successful outcome of this replacement therapy, transplanted cells should provide adequate hormone secretion and respond to adrenal physiological stimuli. Here, we describe the generation and characterization of primary porcine adrenal spheroids capable of replacing the function of adrenal glands in vivo. Cells within the spheroids morphologically resembled adult adrenocortical cells and synthesized and secreted adrenal steroid hormones in a regulated manner. Moreover, the embedding of the spheroids in alginate led to the formation of cellular elongations of steroidogenic cells migrating centripetally towards the inner part of the slab, similar to zona Fasciculata cells in the intact organ. Finally, transplantation of adrenal spheroids in adrenalectomized SCID mice reversed the adrenal insufficiency phenotype, which significantly improved animals' survival. Overall, such adrenal models could be employed for disease modeling and drug testing, and represent the first step toward potential clinical trials in the future.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":" ","pages":"e12819"},"PeriodicalIF":3.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9972525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
XenotransplantationPub Date : 2023-07-01Epub Date: 2023-05-06DOI: 10.1111/xen.12804
Lucrezia Morticelli, Charlotte Rossdam, Samanta Cajic, Dietmar Böthig, Mikhail Magdei, Sugat Ratna Tuladhar, Björn Petersen, Konrad Fischer, Erdmann Rapp, Sotirios Korossis, Axel Haverich, Angelika Schnieke, Heiner Niemann, Falk F R Buettner, Andres Hilfiker
{"title":"Genetic knockout of porcine GGTA1 or CMAH/GGTA1 is associated with the emergence of neo-glycans.","authors":"Lucrezia Morticelli, Charlotte Rossdam, Samanta Cajic, Dietmar Böthig, Mikhail Magdei, Sugat Ratna Tuladhar, Björn Petersen, Konrad Fischer, Erdmann Rapp, Sotirios Korossis, Axel Haverich, Angelika Schnieke, Heiner Niemann, Falk F R Buettner, Andres Hilfiker","doi":"10.1111/xen.12804","DOIUrl":"10.1111/xen.12804","url":null,"abstract":"<p><strong>Background: </strong>Pig-derived tissues could overcome the shortage of human donor organs in transplantation. However, the glycans with terminal α-Gal and Neu5Gc, which are synthesized by enzymes, encoded by the genes GGTA1 and CMAH, are known to play a major role in immunogenicity of porcine tissue, ultimately leading to xenograft rejection.</p><p><strong>Methods: </strong>The N-glycome and glycosphingolipidome of native and decellularized porcine pericardia from wildtype (WT), GGTA1-KO and GGTA1/CMAH-KO pigs were analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection.</p><p><strong>Results: </strong>We identified biantennary and core-fucosylated N-glycans terminating with immunogenic α-Gal- and α-Gal-/Neu5Gc-epitopes on pericardium of WT pigs that were absent in GGTA1 and GGTA1/CMAH-KO pigs, respectively. Levels of N-glycans terminating with galactose bound in β(1-4)-linkage to N-acetylglucosamine and their derivatives elongated by Neu5Ac were increased in both KO groups. N-glycans capped with Neu5Gc were increased in GGTA1-KO pigs compared to WT, but were not detected in GGTA1/CMAH-KO pigs. Similarly, the ganglioside Neu5Gc-GM3 was found in WT and GGTA1-KO but not in GGTA1/CMAH-KO pigs. The applied detergent based decellularization efficiently removed GSL glycans.</p><p><strong>Conclusion: </strong>Genetic deletion of GGTA1 or GGTA1/CMAH removes specific epitopes providing a more human-like glycosylation pattern, but at the same time changes distribution and levels of other porcine glycans that are potentially immunogenic.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":"30 4","pages":"e12804"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10060816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
XenotransplantationPub Date : 2023-07-01Epub Date: 2023-08-07DOI: 10.1111/xen.12816
Zahra Habibabady, Gannon McGrath, Kohei Kinoshita, Akihiro Maenaka, Ileka Ikechukwu, Gabriela F Elias, Tjasa Zaletel, Ivy Rosales, Hidetaka Hara, Richard N Pierson, David K C Cooper
{"title":"Antibody-mediated rejection in xenotransplantation: Can it be prevented or reversed?","authors":"Zahra Habibabady, Gannon McGrath, Kohei Kinoshita, Akihiro Maenaka, Ileka Ikechukwu, Gabriela F Elias, Tjasa Zaletel, Ivy Rosales, Hidetaka Hara, Richard N Pierson, David K C Cooper","doi":"10.1111/xen.12816","DOIUrl":"10.1111/xen.12816","url":null,"abstract":"<p><p>Antibody-mediated rejection (AMR) is the commonest cause of failure of a pig graft after transplantation into an immunosuppressed nonhuman primate (NHP). The incidence of AMR compared to acute cellular rejection is much higher in xenotransplantation (46% vs. 7%) than in allotransplantation (3% vs. 63%) in NHPs. Although AMR in an allograft can often be reversed, to our knowledge there is no report of its successful reversal in a pig xenograft. As there is less experience in preventing or reversing AMR in models of xenotransplantation, the results of studies in patients with allografts provide more information. These include (i) depletion or neutralization of serum anti-donor antibodies, (ii) inhibition of complement activation, (iii) therapies targeting B or plasma cells, and (iv) anti-inflammatory therapy. Depletion or neutralization of anti-pig antibody, for example, by plasmapheresis, is effective in depleting antibodies, but they recover within days. IgG-degrading enzymes do not deplete IgM. Despite the expression of human complement-regulatory proteins on the pig graft, inhibition of systemic complement activation may be necessary, particularly if AMR is to be reversed. Potential therapies include (i) inhibition of complement activation (e.g., by IVIg, C1 INH, or an anti-C5 antibody), but some complement inhibitors are not effective in NHPs, for example, eculizumab. Possible B cell-targeted therapies include (i) B cell depletion, (ii) plasma cell depletion, (iii) modulation of B cell activation, and (iv) enhancing the generation of regulatory B and/or T cells. Among anti-inflammatory agents, anti-IL6R mAb and TNF blockers are increasingly being tested in xenotransplantation models, but with no definitive evidence that they reverse AMR. Increasing attention should be directed toward testing combinations of the above therapies. We suggest that treatment with a systemic complement inhibitor is likely to be most effective, possibly combined with anti-inflammatory agents (if these are not already being administered). Ultimately, it may require further genetic engineering of the organ-source pig to resolve the problem entirely, for example, knockout or knockdown of SLA, and/or expression of PD-L1, HLA E, and/or HLA-G.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":"30 4","pages":"e12816"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101061/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10121125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
XenotransplantationPub Date : 2023-07-01Epub Date: 2023-04-30DOI: 10.1111/xen.12803
Nicole Fischer, Barbara Gulich, Barbara Keßler, Matthias Längin, Jay A Fishman, Eckhard Wolf, Klaus Boller, Ralf R Tönjes, Antonia W Godehardt
{"title":"PCR and peptide based PCMV detection in pig - development and application of a combined testing procedure differentiating newly from latent infected pigs.","authors":"Nicole Fischer, Barbara Gulich, Barbara Keßler, Matthias Längin, Jay A Fishman, Eckhard Wolf, Klaus Boller, Ralf R Tönjes, Antonia W Godehardt","doi":"10.1111/xen.12803","DOIUrl":"10.1111/xen.12803","url":null,"abstract":"<p><p>Porcine cytomegalovirus (PCMV) is widely distributed in pigs and difficult to detect due to latency. PCMV infection of source pigs was associated with early graft failure after cardiac and renal xenotransplantation into nonhuman primates. Importantly, PCMV infection of the first genetically modified pig heart into a human may have contributed to the reduced survival of the patient. Sensitive and reliable assays for detection of latent PCMV infection are thus indispensable. Here, we report the development of five peptide-induced rabbit antisera specific for PCMV glycoprotein B (gB) and their validation for detection of PCMV in infected pig fallopian tube (PFT) cells by immunofluorescence and electron microscopy (EM). The anti-gB antibodies were also used for detection by Western blot analysis of PCMV purified from the supernatant of infected PFT cells. Sera of infected versus non-infected pigs have been compared. In parallel, PCMV viral load in blood samples of the animals was quantified by a novel highly sensitive nested-PCR and qPCR assay. A combination of four partly overlapping peptides from the gB C-terminus was used to establish a diagnostic ELISA for PCMV gB specific pig antibodies which is able to differentiate infected from non-infected animals and to quantify maternal antibodies in neonates. The combination of a highly sensitive nested PCR for direct virus detection with a sensitive peptide-based ELISA detecting anti-PCMV gB-antibodies, supplemented by Western blot analysis and/or immunohistochemistry for virus detection will reliably differentiate pigs with active infection, latently infected pigs, and non-infected pigs. It may significantly improve the virologic safety of xenotransplantation.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":"30 4","pages":"e12803"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10062931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
XenotransplantationPub Date : 2023-07-01Epub Date: 2023-07-28DOI: 10.1111/xen.12812
Ryan Chaban, Gannon McGrath, Zahra Habibabady, Ivy Rosales, Lars Burdorf, David L Ayares, Elana Rybak, Tianshu Zhang, Donald G Harris, Siamak Dahi, Franchesca Ali, Dawn M Parsell, Gheorghe Braileanu, Xiangfei Cheng, Evelyn Sievert, Carol Phelps, Agnes M Azimzadeh, Richard N Pierson
{"title":"Increased human complement pathway regulatory protein gene dose is associated with increased endothelial expression and prolonged survival during ex-vivo perfusion of GTKO pig lungs with human blood.","authors":"Ryan Chaban, Gannon McGrath, Zahra Habibabady, Ivy Rosales, Lars Burdorf, David L Ayares, Elana Rybak, Tianshu Zhang, Donald G Harris, Siamak Dahi, Franchesca Ali, Dawn M Parsell, Gheorghe Braileanu, Xiangfei Cheng, Evelyn Sievert, Carol Phelps, Agnes M Azimzadeh, Richard N Pierson","doi":"10.1111/xen.12812","DOIUrl":"10.1111/xen.12812","url":null,"abstract":"<p><strong>Introduction: </strong>Expression of human complement pathway regulatory proteins (hCPRP's) such as CD46 or CD55 has been associated with improved survival of pig organ xenografts in multiple different models. Here we evaluate the hypothesis that an increased human CD46 gene dose, through homozygosity or additional expression of a second hCPRP, is associated with increased protein expression and with improved protection from injury when GTKO lung xenografts are perfused with human blood.</p><p><strong>Methods: </strong>Twenty three GTKO lungs heterozygous for human CD46 (GTKO.heteroCD46), 10 lungs homozygous for hCD46 (GTKO.homoCD46), and six GTKO.homoCD46 lungs also heterozygous for hCD55 (GTKO.homoCD46.hCD55) were perfused with human blood for up to 4 h in an ex vivo circuit.</p><p><strong>Results: </strong>Relative to GTKO.heteroCD46 (152 min, range 5-240; 6/23 surviving at 4 h), survival was significantly improved for GTKO.homoCD46 (>240 min, range 45-240, p = .034; 7/10 surviving at 4 h) or GTKO.homoCD46.hCD55 lungs (>240 min, p = .001; 6/6 surviving at 4 h). Homozygosity was associated with increased capillary expression of hCD46 (p < .0001). Increased hCD46 expression was associated with significantly prolonged lung survival (p = .048),) but surprisingly not with reduction in measured complement factor C3a. Hematocrit, monocyte count, and pulmonary vascular resistance were not significantly altered in association with increased hCD46 gene dose or protein expression.</p><p><strong>Conclusion: </strong>Genetic engineering approaches designed to augment hCPRP activity - increasing the expression of hCD46 through homozygosity or co-expressing hCD55 with hCD46 - were associated with prolonged GTKO lung xenograft survival. Increased expression of hCD46 was associated with reduced coagulation cascade activation, but did not further reduce complement activation relative to lungs with relatively low CD46 expression. We conclude that coagulation pathway dysregulation contributes to injury in GTKO pig lung xenografts perfused with human blood, and that the survival advantage for lungs with increased hCPRP expression is likely attributable to improved endothelial thromboregulation.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":"30 4","pages":"e12812"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10065632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jad El Masri, Ahmad Afyouni, Maya Ghazi, Tarek Baroud, Doha Al Majdalany, Aalaa Saleh, Hadi El Assaad, Pascale Salameh
{"title":"Current state of clinical trials on xenograft.","authors":"Jad El Masri, Ahmad Afyouni, Maya Ghazi, Tarek Baroud, Doha Al Majdalany, Aalaa Saleh, Hadi El Assaad, Pascale Salameh","doi":"10.1111/xen.12801","DOIUrl":"https://doi.org/10.1111/xen.12801","url":null,"abstract":"<p><strong>Background: </strong>Xenotransplantation is a worth investing branch of science, since it aims to fulfil the demand on human cells, tissues and organs. Despite decades of consistent work in preclinical assessments, clinical trials on xenotransplantation are far from reaching the targeted goal. Our study aims to track the characteristics, assess the content and summarize the plan of each trial on skin, beta-island, bone marrow, aortic valve and kidney xenografts, leading to a clear sorting of efforts made in this field.</p><p><strong>Methods: </strong>In December 2022, we searched clinicaltrial.gov for interventional clinical trials related to xenograft of skin, pancreas, bone marrow, aortic valve and kidney. A total of 14 clinical trials are included in this study. Characteristics on each trial were gathered. Linked publications were searched using Medline/PubMed and Embase/Scopus. Content of trials was reviewed and summarized.</p><p><strong>Results: </strong>Only 14 clinical trials met our study's criteria. The majority were completed, and most of the trials' enrolment was between 11 and 50 participants. Nine trials used a xenograft of porcine origin. Six trials targeted skin xenotransplantation, four targeted β-cells, two targeted bone marrow and one trial targeted each of the kidney and aortic valve. The average length of trials was 3.38 years. Four trials were conducted in the United States and two trials in each of Brazil, Argentina and Sweden. Of all the included trials, none had any results provided and only three had published work. Phases I, III, and IV had only one trial each. A total of 501 participants were enrolled in these trials.</p><p><strong>Conclusion: </strong>This study sheds the light on the current state of clinical trials on xenograft. Characteristically, trials on this field are of low number, low enrolment, short duration, few related publications and no published results. Porcine organs are the most used in these trials, and skin is the most studied organ. An extension of the literature is highly needed due to the variety of conflicts mentioned. Overall, this study sheds the light on the necessity of managing research efforts, leading to the initiation of more trials targeting the field of xenotransplantation.</p>","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":"30 3","pages":"e12801"},"PeriodicalIF":3.9,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9724896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}