Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, Claudia Teutschbein
{"title":"Droughts in forested ecoregions in cold and continental climates: A review of vulnerability concepts and factors in socio‐hydrological systems","authors":"Elin Stenfors, Malgorzata Blicharska, Thomas Grabs, Claudia Teutschbein","doi":"10.1002/wat2.1692","DOIUrl":"https://doi.org/10.1002/wat2.1692","url":null,"abstract":"Abstract In a changing climate, drought risk and vulnerability assessments are becoming increasingly important. Following the global call for proactive drought risk management, drought vulnerability assessments are progressively taking their stage in the drought research community. As the manifestation of drought vulnerability is dependent on the social, ecological, and hydroclimatic context in which it occurs, identifying vulnerability factors relevant for specific climatological and ecological regions may improve the quality of vulnerability assessments. Meanwhile, a holistic overview of factors affecting vulnerability in polar and cold climates is currently lacking. These regions are home to large socio‐hydrological systems including urban areas, energy systems, agricultural practices, and the boreal forest. By conducting an interdisciplinary systematic literature review, the manifestation and conceptualization of drought vulnerability were identified for forested ecoregions in the Köppen–Geiger D and E climates. Vulnerability factors, as described by several scientific disciplines, were identified and combined into a conceptual framework for drought vulnerability in the study region. The results demonstrate the wide range of conceptualizations that exist for assessing drought vulnerability, and the thematic differences between sectors such as forestry, water supply, and agriculture. The conceptual framework presented herein adopts a novel approach, categorizing vulnerability factors by their location in a socio‐hydrological system, and their relation to blue or green water sources. This allowed for identification of systemic vulnerability patterns, providing new insights into regional differences in drought vulnerability and a base for stakeholders performing proactive drought risk assessments in the study region. This article is categorized under: Human Water > Methods Science of Water > Water Extremes Water and Life > Conservation, Management, and Awareness Human Water > Water Governance","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"226 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135258243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The geomorphological and ecological functioning of the Silala River","authors":"Luca Mao","doi":"10.1002/wat2.1691","DOIUrl":"https://doi.org/10.1002/wat2.1691","url":null,"abstract":"Abstract Perennial rivers in desert regions are relevant environments that tend to concentrate most ecosystem services and values, but are not as studied as much as intermittent and ephemeral rivers. This article reports on the main morphological and ecological features of the Silala River, a narrow permanent river in the arid region of Antofagasta, in the north of Chile. The study was motivated by the dispute between Chile and Bolivia concerning the status of the Silala as an international watercourse. Field surveys of sediment transport using traps and marked sediments (colored and tagged clasts) revealed that finer sediments are moved in higher percentages and for longer distances than coarser sediment fractions, which corroborates the size‐selective nature of sediment dynamics in the river. The stream features the typical step/pool‐plane bed morphology that is to be expected in an alluvial river with the given boundary conditions of slope, grain size of sediments, and lateral confinement. Furthermore, the Morphological Quality Index (MQI) classifies the river as featuring overall good morphological conditions and the river hosts an abundant population of rainbow trout ( Oncorhynchus mykiss ). Although this is a non‐native species, their presence shows that the general conditions of the river (availability of food and presence of aquatic habitats) are able to sustain a population of resident fish. Overall, the morphological forms, geomorphic processes, and ecological features of the Silala River are typical of an alluvial stream with a permanent flow regime. This article is categorized under: Science of Water > Water and Environmental Change Human Water > Rights to Water Science of Water > Hydrological Processes Water and Life > Nature of Freshwater Ecosystems","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135936893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Tammeorg, Ingrid Chorus, Bryan Spears, P. Nõges, Gertrud K. Nürnberg, P. Tammeorg, M. Søndergaard, Erik Jeppesen, Hans Paerl, Brian Huser, J. Horppila, Tom Jilbert, A. Budzyńska, Renata Dondajewska-Pielka, R. Gołdyn, Sina Haasler, S. Hellsten, Laura H. Härkönen, M. Kiani, A. Kozak, N. Kotamäki, K. Kowalczewska-Madura, Silvia Newell, L. Nurminen, T. Nõges, Kasper Reitzel, J. Rosińska, J. Ruuhijärvi, S. Silvonen, C. Skov, Tamara Važić, Anne-Mari Ventelä, G. Waajen, M. Lürling
{"title":"Sustainable lake restoration: From challenges to solutions","authors":"O. Tammeorg, Ingrid Chorus, Bryan Spears, P. Nõges, Gertrud K. Nürnberg, P. Tammeorg, M. Søndergaard, Erik Jeppesen, Hans Paerl, Brian Huser, J. Horppila, Tom Jilbert, A. Budzyńska, Renata Dondajewska-Pielka, R. Gołdyn, Sina Haasler, S. Hellsten, Laura H. Härkönen, M. Kiani, A. Kozak, N. Kotamäki, K. Kowalczewska-Madura, Silvia Newell, L. Nurminen, T. Nõges, Kasper Reitzel, J. Rosińska, J. Ruuhijärvi, S. Silvonen, C. Skov, Tamara Važić, Anne-Mari Ventelä, G. Waajen, M. Lürling","doi":"10.1002/wat2.1689","DOIUrl":"https://doi.org/10.1002/wat2.1689","url":null,"abstract":"Sustainable management of lakes requires us to overcome ecological, economic, and social challenges. These challenges can be addressed by focusing on achieving ecological improvement within a multifaceted, co‐beneficial context. In‐lake restoration measures may promote more rapid ecosystem responses than is feasible with catchment measures alone, even if multiple interventions are needed. In particular, we identify restoration methods that support the overarching societal target of a circular economy through the use of nutrients, sediments, or biomass that are removed from a lake, in agriculture, as food, or for biogas production. In this emerging field of sustainable restoration techniques, we show examples, discuss benefits and pitfalls, and flag areas for further research and development. Each lake should be assessed individually to ensure that restoration approaches will effectively address lake‐specific problems, do not harm the target lake or downstream ecosystems, are cost‐effective, promote delivery of valuable ecosystem services, minimize conflicts in public interests, and eliminate the necessity for repeated interventions. Achieving optimal, sustainable results from lake restoration relies on multidisciplinary research and close interactions between environmental, social, political, and economic sectors.This article is categorized under:\u0000Science of Water > Water Quality\u0000Water and Life > Stresses and Pressures on Ecosystems\u0000Water and Life > Conservation, Management, and Awareness\u0000","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47196525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. D. P. O. Peramuna, N. Neluwala, K. Wijesundara, S. DeSilva, S. Venkatesan, P. Dissanayake
{"title":"Review on model development techniques for dam break flood wave propagation","authors":"P. D. P. O. Peramuna, N. Neluwala, K. Wijesundara, S. DeSilva, S. Venkatesan, P. Dissanayake","doi":"10.1002/wat2.1688","DOIUrl":"https://doi.org/10.1002/wat2.1688","url":null,"abstract":"Catastrophic failure of dam structures has often led to severe consequences. The colossal wave receding at a higher velocity from the sudden failure of the dams may obliterate the downstream areas causing loss of lives and property damage. Thus, proper mitigation measures and contingency plans must be formulated beforehand to minimize the impact of such disasters. Consequently, there has been a strong tendency to study dam breach flood modeling using different approaches for both hypothetical dam breach scenarios and real incidents. The technology used for dam breach studies is advancing and a comprehensive review of the existing methodologies would help the modelers in their model development. This paper reviews the state‐of‐the‐art methodologies utilized in studies to propagate the dam break flood wave. Furthermore this guides the selection of methods best suited considering the project‐specific requirements and the complexity of project to simulate the risk to the vulnerable areas generated from the dam break flood flow. Different terrain datasets, mesh generation techniques and calibration techniques have been adapted and adhered to improve computational accuracy, stability and efficiency in modeling dam break floods. The use of high‐resolution global and site‐specific datasets, subgrid models, the choice of roughness coefficients and high‐resolution time steps have to be investigated thoroughly in these models. The paper reviews the existing methodologies with the strengths and limitations facilitating the future dam breach modelers to select the suitable approach in dam break flood wave modeling.This article is categorized under:\u0000Engineering Water > Sustainable Engineering of Water\u0000Science of Water > Water Extremes\u0000Water and Life > Conservation, Management, and Awareness\u0000","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":"1 1","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41731813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Brewis, L. DuBois, A. Wutich, E. Adams, S. Dickin, S. Elliott, V. Empinotti, Leila M. Harris, Elisabeth Ilboudo Nébié, Marina Korzenevica
{"title":"Gender identities, water insecurity, and risk: Re‐theorizing the connections for a gender‐inclusive toolkit for water insecurity research","authors":"A. Brewis, L. DuBois, A. Wutich, E. Adams, S. Dickin, S. Elliott, V. Empinotti, Leila M. Harris, Elisabeth Ilboudo Nébié, Marina Korzenevica","doi":"10.1002/wat2.1685","DOIUrl":"https://doi.org/10.1002/wat2.1685","url":null,"abstract":"Informed by decades of literature, water interventions increasingly deploy “gender‐sensitive” or even “gender transformative” approaches that seek to redress the disproportionate harms women face from water insecurity. These efforts recognize the role of gendered social norms and unequal power relations but often focus narrowly on the differences and dynamics between cisgender (cis) men and women. This approach renders less visible the ways that living with water insecurity can differentially affect all individuals through the dynamics of gender, sexuality, and linked intersecting identities. Here, we first share a conceptual toolkit that explains gender as fluid, negotiated, and diverse beyond the cis‐binary. Using this as a starting point, we then review what is known and can be theorized from current literature, identifying limited observations from water‐insecure communities to identify examples of contexts where gendered mechanisms (such as social norms) differentiate experiences of water insecurity, such as elevating risks of social stigma, physical harm, or psychological distress. We then apply this approach to consider expanded ways to include transgender, non‐binary, and gender and sexual diversity to deepen, nuance and expand key thematics and approaches for water insecurity research. Reconceptualizing gender in these ways widens theoretical possibilities, changes how we collect data, and imagines new possibilities for effective and just water interventions.This article is categorized under:\u0000Human Water > Value of Water\u0000Engineering Water > Water, Health, and Sanitation\u0000Human Water > Water as Imagined and Represented\u0000Human Water > Methods\u0000","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45352799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth A. Koebele, L. E. Méndez-Barrientos, Nikki Nadeau, A. Gerlak
{"title":"Beyond engagement: Enhancing equity in collaborative water governance","authors":"Elizabeth A. Koebele, L. E. Méndez-Barrientos, Nikki Nadeau, A. Gerlak","doi":"10.1002/wat2.1687","DOIUrl":"https://doi.org/10.1002/wat2.1687","url":null,"abstract":"Collaborative governance has emerged as a promising approach for addressing complex water sustainability issues, with purported benefits from enhanced democracy to improved environmental outcomes. Collaborative processes are often assumed to be inherently more equitable than traditional governance approaches due to their goal of engaging diverse actors in the development of policy and management solutions. However, when collaborative water governance processes ignore issues of politics and power in their design, they risk creating or even exacerbating existing inequities. How, then, can collaborative water governance processes be designed to enhance, rather than undermine, equity? To answer this question, we first conduct an extensive review of the collaborative governance literature to identify common design features of collaborative processes, which each present potential benefits and challenges for actualizing equitable collaborative water governance. After critically discussing these design features, we explore how they are executed through two case studies of collaborative water governance in western North America: groundwater governance reform in California and transnational Colorado River Delta governance. In reflecting on these cases, we chart an agenda for future collaborative water governance research and practice that moves beyond engaging diverse actors to promoting equity among them.This article is categorized under:\u0000Human Water > Water Governance\u0000Science of Water > Water and Environmental Change\u0000Engineering Water > Planning Water\u0000","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47246577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriela Cuadrado‐Quesada, E. Lictevout, S. Schmeier, Claudia Ruz Vargas
{"title":"Revisiting groundwater law through the lenses of earth system law and rights of nature","authors":"Gabriela Cuadrado‐Quesada, E. Lictevout, S. Schmeier, Claudia Ruz Vargas","doi":"10.1002/wat2.1684","DOIUrl":"https://doi.org/10.1002/wat2.1684","url":null,"abstract":"Current groundwater challenges have made evident that national and international groundwater law needs a thorough revision. In this article, we explore earth system law (ESL) and rights of nature (RoN) as possible approaches to rethink groundwater law. Taking inspiration from ESL scholarship, RoN literature, Indigenous worldviews, and socio‐ecological movements, we analyze law as a critical element of the human‐political‐social system, which creates regulatory institutions with the aim to provide a social order for humanity, an order that is being affected by deteriorating earth systems, including groundwater. Recognizing RoN and thinking law through the lenses of ESL involve a new understanding of what groundwater law could be and what the subject of the law could be. So far, little attention has been given to how these approaches can be used to redesign groundwater law, and what implications this could have on groundwater governance and sustainability. Therefore, this article explores the possibility of reforming groundwater law through the lenses of ESL and RoN. It investigates which legal mechanisms are being used to recognize RoN, and what their legal and practical implications have been so far. This article aims to contribute not only to advancing the academic debate on RoN and ESL but also to share light on different ways to reform groundwater law, which includes a new understanding of sustainability and socio‐nature relations.This article is categorized under:\u0000Human Water > Rights to Water\u0000Human Water > Water Governance\u0000Science of Water > Water and Environmental Change\u0000","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42587598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Suárez, A. Sarabia, P. Sanzana, C. Latorre, J. Muñoz
{"title":"The Quebrada Negra wetland study: An approach to understand plant diversity, hydrology, and hydrogeology of high‐Andean wetlands","authors":"F. Suárez, A. Sarabia, P. Sanzana, C. Latorre, J. Muñoz","doi":"10.1002/wat2.1683","DOIUrl":"https://doi.org/10.1002/wat2.1683","url":null,"abstract":"High‐Andean peatlands are high‐altitude wetland ecosystems found throughout the arid central Andes of South America. They form through the establishment of specialized grasses and cushion sedges that are well‐adapted to cold temperatures, in areas where groundwater emerges. The Silala River is a groundwater‐fed high‐Andean fluvial system, which emerges in various springs that generate wetlands, the Cajones and Orientales (Bolivia), the river's headwater sources, and the Quebrada Negra (Chile) being the most important. This article reviews detailed monitoring undertaken in the undisturbed Quebrada Negra wetland to provide insights into wetland processes, and to compare its functioning to that of the Bolivian wetlands, which were channelized a century ago. Vegetation composition was found to be similar among the three wetlands, and their spatiotemporal vegetation cover distribution showed strong seasonal and interannual variability. The channelized Bolivian wetlands have the highest annual actual evapotranspiration values (~700 mm, due to their higher vegetation vigor), as estimated using remote sensing, ~10% greater than that obtained in the undisturbed Quebrada Negra wetland. For the Quebrada Negra wetland, groundwater monitoring revealed that hydraulic head contours are consistent with the topography, although water sources to the wetland are complex to identify. While significant groundwater inflows arise at the wetland edges, upwelling and downwelling conditions are observed at various locations within the wetland, similar to other high‐Andean wetlands. The observations suggest that while the underlying groundwater discharge sustains the saturated conditions of the wetland, the spatial variability of groundwater inputs results in a negligible impact of channelization on wetland evapotranspiration.This article is categorized under:\u0000Water and Life > Stresses and Pressures on Ecosystems\u0000Science of Water > Hydrological Processes\u0000","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42083670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Collaboration for source water protection in the United States: Community water systems engagement in nitrate pollution reduction","authors":"E. Rauh, S. Hughes","doi":"10.1002/wat2.1682","DOIUrl":"https://doi.org/10.1002/wat2.1682","url":null,"abstract":"Contaminated source water for cities contributes to negative human health impacts and rising water treatment costs. Nutrient pollution is the primary source of surface water quality impairment in the United States and agriculture is the largest source of nutrient pollution (specifically nitrogen or nitrate) entering waterways. Solutions to source water contamination have historically centered on nutrient removal at the drinking water plant, which often requires additional investment. Pollution prevention through watershed management may be more cost‐effective in some contexts and has greater co‐benefits, and some drinking water managers and agricultural stakeholders have collaborated to create successful prevention programs. However, drinking water managers must balance several service requirements and regulatory standards, and may lack the resources or capacity needed to effectively engage in or initiate regional collaborations. This paper serves as an introduction to nutrient contamination of source waters and protection measures in the United States and provides a discussion of watershed‐scale collaboration, particularly the engagement of municipal drinking water managers.This article is categorized under:\u0000Human Water > Water Governance\u0000Water and Life > Conservation, Management, and Awareness\u0000Science of Water > Water Quality\u0000","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42594829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rewilding and the water cycle","authors":"G. Harvey, A. Henshaw","doi":"10.1002/wat2.1686","DOIUrl":"https://doi.org/10.1002/wat2.1686","url":null,"abstract":"Rewilding is a radical approach to landscape conservation that has the potential to help mitigate flood risk and low flow stresses, but this remains largely unexplored. Here, we illustrate the nature of hydrological changes that rewilding can be expected to deliver through reducing or ceasing land management, natural vegetation regeneration, species (re)introductions, and changes to river networks. This includes major changes to above‐ and below‐ground vegetation structure (and hence interception, evapotranspiration, infiltration, and hydraulic roughness), soil hydrological properties, and the biophysical structure of river channels. The novel, complex, uncertain, and longer‐term nature of rewilding‐driven change generates some key challenges, and rewilding is currently relatively constrained in geographical extent. Significant changes to the water cycle that benefit people and nature are possible but there is an urgent need for improved understanding and prediction of rewilding trajectories and their hydrological effects, generation of the knowledge and tools to facilitate stakeholder engagement, and an extension of the geography of rewilding opportunities.This article is categorized under:\u0000Science of Water > Hydrological Processes\u0000Science of Water > Water Extremes\u0000Water and Life > Conservation, Management, and Awareness\u0000","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47942809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}