Jibran Iqbal , Noor S. Shah , Javed Ali Khan , Mohamed A. Habila , Grzegorz Boczkaj , Asam Shad , Yousef Nazzal , Ahmed A. Al-Taani , Fares Howari
{"title":"Bimetallic Bi/Cu0-catalyzed persulfate-based advanced oxidation processes towards clofibric acid degradation in wastewater","authors":"Jibran Iqbal , Noor S. Shah , Javed Ali Khan , Mohamed A. Habila , Grzegorz Boczkaj , Asam Shad , Yousef Nazzal , Ahmed A. Al-Taani , Fares Howari","doi":"10.1016/j.wri.2023.100226","DOIUrl":"https://doi.org/10.1016/j.wri.2023.100226","url":null,"abstract":"<div><p>Clofibric acid (CFA), an important blood-lipid regulatory drug is an emerging organic pollutant and widely reported in water resources. A novel bimetallic, bismuth/zero valent cupper (Bi/Cu<sup>0</sup>) catalyst was prepared which showed better physiological, structural, and catalytic properties than Cu<sup>0</sup>. The Bi/Cu<sup>0</sup> effectively catalyzed persulfate (S<sub>2</sub>O<sub>8</sub><sup>2−</sup>) and caused 85% degradation of CFA. The Bi coupling improved reusability and stability of Cu<sup>0</sup>. The use of alcoholic and anionic radical scavengers and analyzing change in [S<sub>2</sub>O<sub>8</sub><sup>2−</sup>]<sub>0</sub> proved that Bi/Cu<sup>0</sup>/S<sub>2</sub>O<sub>8</sub><sup>2−</sup> yield hydroxyl radicals (<sup>●</sup>OH) and sulfate radicals (SO<sub>4</sub><sup>●–</sup>). The <sup>●</sup>OH and SO<sub>4</sub><sup>●–</sup> showed faster reaction with CFA, i.e., 4.65 <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>9</sup> and 3.82 <span><math><mrow><mo>×</mo></mrow></math></span> 10<sup>9</sup> M<sup>−1</sup> s<sup>−1</sup> and degraded CFA into four degradation products. Under optimal conditions of [Bi/Cu<sup>0</sup>]<sub>0</sub> = 1.0 g/L and [S<sub>2</sub>O<sub>8</sub><sup>2−</sup>]<sub>0</sub> = 40 mg/L, 99.5% degradation of the 10 mg/L of CFA was achieved at 65 min. Temperature showed promising effects on the removal of CFA by Bi/Cu<sup>0</sup>/S<sub>2</sub>O<sub>8</sub><sup>2−</sup> and caused 98% removal at 323 K than 75% at 298 K at 32 min. The temperature effects were used to calculate activation energy, enthalpy, and rate constant of CFA degradation. The Bi/Cu<sup>0</sup>/S<sub>2</sub>O<sub>8</sub><sup>2−</sup> showed effective removal of CFA in real water samples also. The ecotoxicity study confirmed non-toxic product formation which suggests high capability of the proposed technology in the treatment of CFA.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"30 ","pages":"Article 100226"},"PeriodicalIF":5.1,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49715342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Environment friendly treatment of petroleum hydrocarbon contaminated formation water: Mechanisms and consequences for degradation and adsorption","authors":"Manisha Goswami , Rupshikha Patowary , Kaustuvmani Patowary , Hari Prasad Sarma , Suprakash Rabha , Bhaswati Devi , Nimisha Sarma , Emee Das , Arundhuti Devi","doi":"10.1016/j.wri.2023.100224","DOIUrl":"10.1016/j.wri.2023.100224","url":null,"abstract":"<div><p>An innovative approach to remediate oilfield produced water, a major environmental pollutant from the oil and gas industry has been demonstrated in this study. The technique combines: invasive wetland plant (<em>Pistia stratiotes</em>) used in absorbing and metabolizing hydrocarbons present in the oilfield formation water, biosurfactant from indigenous Bacteria making them more accessible for degradation and fertilizer NPK act as biostimulator. The main objectives of this technique are to remediate Total Petroleum Hydrocarbons (TPH) in an environmentally friendly manner to be a potential for the petroleum sector. The success of the technique is supported by the results of GC-MS analysis, which detected no hydrocarbon compounds in treated water. However, after treatment using the proposed combination 90.1% of the TPH was degraded, and the remaining 9.9% was adsorbed by the biomaterials. Thus, this study would present a potential breakthrough in the ongoing battle against pollution caused by the oil and gas industry.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"30 ","pages":"Article 100224"},"PeriodicalIF":5.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42148688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Al-Saidi , Imen Saadaoui , Radhouane Ben-Hamadou
{"title":"Governing desalination, managing the brine: A review and systematization of regulatory and socio-technical issues","authors":"Mohammad Al-Saidi , Imen Saadaoui , Radhouane Ben-Hamadou","doi":"10.1016/j.wri.2023.100225","DOIUrl":"10.1016/j.wri.2023.100225","url":null,"abstract":"<div><p>Desalination has become an attractive option for addressing water needs or solving problems of increasing water scarcity and short-term supply interruptions. However, several negative environmental impacts are associated with the resulting brine, for which a range of treatment, recovery, and disposal technologies have been suggested in the academic literature. Despite this, the technological emphasis fails to explain the absence of sustainable practices in many countries or the roles and responsibilities of involved actors. There is also a lack of consistent conceptualizations that include regulatory and governance-related issues. In this review paper, we examined the brine management issue in desalination activities as a socio-technical issue that needs to be embedded more strongly within governance and regulatory frameworks. Case experiences and options related to command and control, economic regulation, market-based approaches and public support are discussed and linked with brine management practices. This review paper shows that baseline regulations such as standards, assessments, and thresholds are still emerging, but they need to be complemented by approaches focusing on desalination costs and environmental performance. Overall, cross-sectoral collaboration in designing local brine regulation options is important for solving the brine issue. There is a need to create a joint action arena between the desalination industry, the public sector, and actors involved in innovations related to brine management. Besides, public leadership, through providing incentives and investments, is highly valuable for sustainable brine management. This leadership should address the cost of brine treatment or the required infrastructural development.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"30 ","pages":"Article 100225"},"PeriodicalIF":5.1,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45858852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Arslan , Maria Yaqub , Irfan Ahmed Shaikh
{"title":"Assessment of reuse potential of highway runoff water in textile wet processing","authors":"Muhammad Arslan , Maria Yaqub , Irfan Ahmed Shaikh","doi":"10.1016/j.wri.2023.100222","DOIUrl":"10.1016/j.wri.2023.100222","url":null,"abstract":"<div><p>The current study assesses the reuse potential of highway runoff water instead of fresh water in textile wet processing. Specific standard and batch fabric samples of selected reactive dyes were prepared in the laboratory using highway runoff water in the dyeing and washing stages of wet processing, and the quality of these fabric samples was assessed in terms of color difference properties, color strength properties, and color fastness properties. Batch 1 and batch 2 fabric samples, where highway runoff water was used in dyeing and washing, respectively, show excellent quality, whereas batch 3 fabric samples, where highway runoff water was used simultaneously in dyeing and washing stages, showed unreliable results. The total color difference value (DE*<sub>CMC</sub>) was found to be 0.14 to 0.75, 0.77 to 0.96, and 0.88 to 3.34 for batch 1, batch 2, and batch 3 fabric samples. Regarding color fastness to washing and crocking, dyeing quality ranges from very good to outstanding for batch 1, good to outstanding for batch 2, and moderate to excellent for batch 3 fabric samples.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"30 ","pages":"Article 100222"},"PeriodicalIF":5.1,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45203783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michaela Tokarčíková , Pavlína Peikertová , Karla Čech Barabaszová , Ondřej Životský , Roman Gabor , Jana Seidlerová
{"title":"Regeneration possibilities and application of magnetically modified biochar for heavy metals elimination in real conditions","authors":"Michaela Tokarčíková , Pavlína Peikertová , Karla Čech Barabaszová , Ondřej Životský , Roman Gabor , Jana Seidlerová","doi":"10.1016/j.wri.2023.100219","DOIUrl":"10.1016/j.wri.2023.100219","url":null,"abstract":"<div><p>Although new types of composites with magnetic properties and high adsorption capacity for potentially toxic elements elimination are studied by researcherers, the information about the reusability, stability and removal efficiency of composites is still scarce or absent. Therefore, the aim of our work was applicate the sorbent to eliminate Zn(II), Cd(II) and Pb(II) ions from industrial waste leachates, and moreover, study the composite reusability and magnetic separation efficiency. Magnetically modified biochar was prepared from the fermentation residue of maise hybrid by a simple two-step method with microwave assistance. Composite properties, as well as the adsorption efficiency and magnetic response are depend on the extraction agent. The alkaline extraction agent showed the best properties for reusability and had no influence on Fe releasing from the composite, the adsorption efficiency was higher than 90% even in the 5<sup>th</sup> recycling cycle, and the composite remained magnetically active. The separation efficiency of composite from an aqueous environment by a magnet was higher than 95% within 15 min. Magnetically modified biochar proved to be an effective sorbent for metal ions elimination from wastewater.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"30 ","pages":"Article 100219"},"PeriodicalIF":5.1,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47475814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashish V. Mohod , Malwina Momotko , Noor Samad Shah , Mateusz Marchel , Mohammad Imran , Lingshuai Kong , Grzegorz Boczkaj
{"title":"Degradation of Rhodamine dyes by Advanced Oxidation Processes (AOPs) – Focus on cavitation and photocatalysis - A critical review","authors":"Ashish V. Mohod , Malwina Momotko , Noor Samad Shah , Mateusz Marchel , Mohammad Imran , Lingshuai Kong , Grzegorz Boczkaj","doi":"10.1016/j.wri.2023.100220","DOIUrl":"https://doi.org/10.1016/j.wri.2023.100220","url":null,"abstract":"<div><p>This review evaluates selected advanced oxidation processes (AOPs) - cavitation and photocatalysis - successfully used for wastewater treatment towards degradation of Rhodamine (Rh) dyes. Reactor configuration and impact of process parameters and oxidants addition (hydrogen peroxide, ozone, persulfates) on degradation effectiveness along with degradation mechanisms are discussed. Best technologies provide 100% degradation within 10–30 min. Rhodamine B is effectively degraded in highly acidic conditions (pH 2), while Rhodamine 6G requires basic conditions (pH 10). The most effective oxidants were hydrogen peroxide and ozone. Ecological Structure Activity Relationships (ECOSAR) revealed acute toxicities of the intermediates and by-products of the Rh dye.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"30 ","pages":"Article 100220"},"PeriodicalIF":5.1,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49731919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashish V Mohod, Malwina Momotko, N. S. Shah, M. Marchel, Mohammad Imran, Lingshuai Kong, G. Boczkaj
{"title":"Degradation of Rhodamine dyes by Advanced Oxidation Processes (AOPs) – Focus on caviatation and photocatalysis - A critical review","authors":"Ashish V Mohod, Malwina Momotko, N. S. Shah, M. Marchel, Mohammad Imran, Lingshuai Kong, G. Boczkaj","doi":"10.1016/j.wri.2023.100220","DOIUrl":"https://doi.org/10.1016/j.wri.2023.100220","url":null,"abstract":"","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49246146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasaman Tadayon , Mohammad Ebrahim Bahrololoom , Sirus Javadpour
{"title":"An experimental study of sunflower seed husk and zeolite as adsorbents of Ni(II) ion from industrial wastewater","authors":"Yasaman Tadayon , Mohammad Ebrahim Bahrololoom , Sirus Javadpour","doi":"10.1016/j.wri.2023.100214","DOIUrl":"10.1016/j.wri.2023.100214","url":null,"abstract":"<div><p>Due to the structural similarities, sunflower seed husk (SSH), an agricultural, low-cost, and eco-friendly waste, is employed interchangeably with zeolite to extract Ni (II) ions from model and real industrial wastewater in this work. Batch experiment adsorption was carried out to investigate the possibility of Ni (II) ion removal by adsorbents. Zeolite powder and SSH were used in three different sizes and without any modifications to optimize the effect of adsorbent size. The maximum adsorption rate of 76% for the bulk size of SSH was obtained at pH 6.5, 20 g/L of adsoadsorbent, an initial concentration of ions of 20 mg/L, and 2 h of contact time. Thermodynamic results showed that the process is spontaneous, feasible, and exothermic within the set temperature range (10°C-80 °C). It can be concluded from the results that SSH can be used as a feasible, eco-friendly, and biodegradable organic material for Ni ion adsorption.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"30 ","pages":"Article 100214"},"PeriodicalIF":5.1,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43723321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed Mahmoodur Rahman , Ali Al-Hamzah , Ali Al-Sahary , Christopher M. Fellows , Ibrahim M. Al-Farsani
{"title":"Film-forming amine product as an alternative to carbohydrazide oxygen scavenger in high pressure boilers","authors":"Mohammed Mahmoodur Rahman , Ali Al-Hamzah , Ali Al-Sahary , Christopher M. Fellows , Ibrahim M. Al-Farsani","doi":"10.1016/j.wri.2023.100212","DOIUrl":"10.1016/j.wri.2023.100212","url":null,"abstract":"<div><p>Hydrazine has been largely replaced by carbohydrazide (CHZ) as an oxygen scavenger due to safety and health concerns and CHZ is now used in Saline Water Conversion Corporation (SWCC) high pressure boilers. However, the operational problem of phosphate hide-out has become a continuous challenge for the plant operators. Advances in boiler water treatment have shown that effective corrosion control and prevention of scaling can be achieved by using a mixture of film-forming and alkalizing amines and polycarboxylates [Film Forming Amine Product (FFAP)]. With the use of FFAP, carbohydrazide/ammonia treatment of make-up water and phosphate treatment in the drum will not be required. A uniform FFAP formulation was used throughout the test.</p><p>The evaluation study was carried out at a boiler of the Yanbu Phase 1 Desalination and Power Plant (Mitsubishi) generating 60 MWh, with make-up water of 15 t h<sup>−1</sup> producing 330 t h<sup>−1</sup> steam at a pressure of 67 barg and temperature of 480 °C.</p><p>The trial provided evidence that FFAP was a good alternative to use of an oxygen scavenger. Changeover from CHZ to FFAP without phosphate addition in the drum was done initially by dosing FFAP from both hydrazine tank and phosphate tank so that pH was maintained to the required values in both feed water and drum water. With the optimal dose rate (0.6 ppm) maintaining FFAP in the range of 0.3–1.0 ppm in feed water, all the key parameters (pH, ammonia and specific conductivity) were within the specified boiler design limits. The average corrosion rates on the water side were low for both CHZ and FFAP treatment (0.009 ± 0.001 mm y<sup>−1</sup>), however FFAP treated coupons showed much lower corrosion rates compared to CHZ in the steam side (0.0006 ± 0.0003 mm y<sup>−1</sup> cf. 0.0075 ± 0.0006 mm y<sup>−1</sup>).</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"29 ","pages":"Article 100212"},"PeriodicalIF":5.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47123067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zohaib Saddique , Muhammad Imran , Ayesha Javaid , Shoomaila Latif , Nazim Hussain , Przemysław Kowal , Grzegorz Boczkaj
{"title":"Band engineering of BiOBr based materials for photocatalytic wastewater treatment via advanced oxidation processes (AOPs) – A review","authors":"Zohaib Saddique , Muhammad Imran , Ayesha Javaid , Shoomaila Latif , Nazim Hussain , Przemysław Kowal , Grzegorz Boczkaj","doi":"10.1016/j.wri.2023.100211","DOIUrl":"10.1016/j.wri.2023.100211","url":null,"abstract":"<div><p>Semiconductor based photocatalysts have been an efficient technology for water and wastewater remediation, addressing the concepts of green chemistry and sustainable development. Owing to narrow and suitable band structure, BiOBr is a promising candidate for efficient wastewater treatment via photocatalysis. Enhancement of photocatalytic properties can be obtained by various techniques like doping, element rich strategy, facet engineering, and defect control. This review primarily focuses on the band engineering of single BiOBr, its binary, ternary composites and their applications in degradation of hazardous pollutants in wastewater. Moreover, current challenges and future perspectives were discussed along with concluding comments.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"29 ","pages":"Article 100211"},"PeriodicalIF":5.1,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47967781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}