Wind EnergyPub Date : 2023-09-27DOI: 10.1002/we.2868
Xueying Feng, Shawn Li, Elizabeth L. Kalies, Caitlin Markus, Peter Harrell, Dalia Patiño‐Echeverri
{"title":"Low impact siting for wind power facilities in the Southeast United States","authors":"Xueying Feng, Shawn Li, Elizabeth L. Kalies, Caitlin Markus, Peter Harrell, Dalia Patiño‐Echeverri","doi":"10.1002/we.2868","DOIUrl":"https://doi.org/10.1002/we.2868","url":null,"abstract":"Abstract Although installed wind power generation capacity in the United States reached 132 GW in 2021, more than quadruple the capacity in 2008, a noticeable void exists in the Southeast. Scant wind power development in this region is due to relatively poorer wind resources, other competitive energy sources, and political opposition. However, the dramatic increases in wind turbine hub height, which allow harvesting the faster wind speeds that occur farther from the ground, combined with a growing sense of urgency to develop renewable energy, point to a near future with significant wind development everywhere, including the Southeast. Nevertheless, the enthusiasm for replacing fossil fuels with renewable sources is tempered by fears that the vast land requirements of utility‐scale wind farms may disrupt valuable ecosystems. In this paper, we identify the areas where installed wind power capacity is least likely to disrupt wildlife and sensitive natural areas in the southeastern United States. The generated maps exclude geographic areas unsuitable for wind power development due to environmental concerns or technical considerations corresponding to five categories. The resulting geospatial product suggests that even after removing sizable areas from consideration, there is significant land for wind development to meet the Southeast's energy needs and clean energy goals.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135581331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind EnergyPub Date : 2023-09-17DOI: 10.1002/we.2864
David Stockhouse, Manuel Pusch, Rick Damiani, Senu Sirnivas, Lucy Pao
{"title":"Robust multi‐loop control of a floating wind turbine","authors":"David Stockhouse, Manuel Pusch, Rick Damiani, Senu Sirnivas, Lucy Pao","doi":"10.1002/we.2864","DOIUrl":"https://doi.org/10.1002/we.2864","url":null,"abstract":"Abstract A principal challenge facing the control of floating offshore wind turbines (FOWTs) is the problem of instability, or “negative damping,” when using blade pitch feedback to control generator speed. This closed‐loop instability can be attributed to non‐minimum phase zeros in the transfer function from blade pitch to generator speed. Standard approaches to improving stability and performance include robust tuning of control gains and introducing multiple feedback loops to respond to platform motion. Combining these approaches is nontrivial because multiple control loops complicate the impact of coupling in the system dynamics. The single‐loop approach to analyzing stability robustness neglects inter‐loop coupling, while a simplistic multi‐loop approach is highly sensitive to dimensional scaling and overestimates the robustness of the single‐loop controller. This work proposes a sensitivity representation that separates some of the natural FOWT dynamic coupling into a parallel feedback loop in the sensitivity function loop to address both of these concerns. The modified robustness measure is used with a simplified linear FOWT model to optimize scheduled multi‐loop control parameters in an automated tuning procedure. This controller is implemented for the 10‐MW Ultraflexible Smart FLoating Offshore Wind Turbine (USFLOWT) and compared against conventional single‐ and multi‐loop controllers tuned using frequency‐domain analysis and high‐fidelity OpenFAST simulations. The multi‐loop robust controller shows the highest overall performance in generator speed regulation and tower load reduction, though consideration of power quality, actuator usage, and other structural loading leads to additional trade‐offs.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135258824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind EnergyPub Date : 2023-09-14DOI: 10.1002/we.2815
Junqiang Zhang, Souma Chowdhury, Jie Zhang, Weiyang Tong, Achille Messac
{"title":"Optimal selection of time windows for preventive maintenance of offshore wind farms subject to wake losses","authors":"Junqiang Zhang, Souma Chowdhury, Jie Zhang, Weiyang Tong, Achille Messac","doi":"10.1002/we.2815","DOIUrl":"https://doi.org/10.1002/we.2815","url":null,"abstract":"The maintenance of wind farms is one of the major factors affecting their profitability. During preventive maintenance, the shutdown of wind turbines causes downtime energy losses. The selection of when and which turbines to maintain can significantly impact the overall downtime energy loss. This paper leverages a wind farm power generation model to calculate downtime energy losses during preventive maintenance for an offshore wind farm. Wake effects are considered to accurately evaluate power output under specific wind conditions. In addition to wind speed and direction, the influence of wake effects is an important factor in selecting time windows for maintenance. To minimize the overall downtime energy loss of an offshore wind farm caused by preventive maintenance, a mixed‐integer nonlinear optimization problem is formulated and solved by the genetic algorithm, which can select the optimal maintenance time windows of each turbine. Weather conditions are imposed as constraints to ensure the safety of maintenance personnel and transportation. Using the climatic data of Cape Cod, Massachusetts, the schedule of preventive maintenance is optimized for a simulated utility‐scale offshore wind farm. The optimized schedule not only reduces the annual downtime energy loss by selecting the maintenance dates when wind speed is low but also decreases the overall influence of wake effects within the farm. The portion of downtime energy loss reduced due to consideration of wake effects each year is up to approximately 0.2% of the annual wind farm energy generation across the case studies—with other stated opportunities for further profitability improvements.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134970858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind EnergyPub Date : 2023-09-12DOI: 10.1002/we.2867
Irene Rivera‐Arreba, Adam S. Wise, Lene V. Eliassen, Erin E. Bachynski‐Polić
{"title":"Effect of atmospheric stability on the dynamic wake meandering model applied to two 12 MW floating wind turbines","authors":"Irene Rivera‐Arreba, Adam S. Wise, Lene V. Eliassen, Erin E. Bachynski‐Polić","doi":"10.1002/we.2867","DOIUrl":"https://doi.org/10.1002/we.2867","url":null,"abstract":"Abstract Current global analysis tools for floating wind turbines (FWTs) do not account for the combined effects of atmospheric stability and wakes from neighboring turbines. This work uses the mid‐fidelity dynamic wake meandering model, together with turbulent wind fields generated based on stable, neutral, and unstable atmospheric conditions, to study the low‐frequency content of the global responses of two semisubmersible FWTs separated by eight rotor diameters. Incoming wind fields based on the Kaimal spectrum and exponential coherence model, the Mann spectral tensor model, and a time‐series input‐based turbulence model are used. The respective input parameters for these models are fitted to high‐fidelity large eddy simulation data. In unstable, below‐rated conditions, meandering leads to an increase in the yaw standard deviation of the downwind turbine of almost three times larger than the upwind turbine. Deficit and the upwards wake deflection affect the mean pitch and yaw, especially for the below‐rated wind speed scenario. The mean pitch of the downwind turbine is reduced up to half the mean pitch value of the upwind turbine, whereas the mean yaw changes direction due to the enhanced effect of shear. The effect of meandering on the structural loading is highest on the standard deviation of the tower‐top yaw moment of the downstream turbine, which increases more than 2.2 times compared to the upwind turbine value. Based on these findings, atmospheric stability affects wake deficit and meandering which in turn have a profound effect on the low‐frequency global motions and structural response of floating wind turbines.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135884352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind EnergyPub Date : 2023-09-10DOI: 10.1002/we.2866
Ander Zarketa‐Astigarraga, Markel Penalba, Alain Martin‐Mayor, Manex Martinez‐Agirre
{"title":"Impact of turbulence and blade surface degradation on the annual energy production of small‐scale wind turbines","authors":"Ander Zarketa‐Astigarraga, Markel Penalba, Alain Martin‐Mayor, Manex Martinez‐Agirre","doi":"10.1002/we.2866","DOIUrl":"https://doi.org/10.1002/we.2866","url":null,"abstract":"Abstract Small‐scale horizontal axis wind‐turbines (SHAWTs) are acquiring relevance within the regulatory policies of the wind sector aiming at net‐zero emissions, while reducing visual and environmental impact by means of distributed grids. SHAWTs operate transitionally, at Reynolds numbers that fall between . Furthermore, environmental turbulence and roughness affect the energetic outcome of the turbines. In this study, the combined effect of turbulence and roughness is analysed via wind tunnel experiments upon a transitionally operating NACA0021 airfoil. The combined effects cause a negative synergy, inducing higher drops in lift and efficiency values than when considering the perturbing agents individually. Besides, such losses are Reynolds‐dependent, with higher numbers increasing the difference between clean and real configurations, reaching efficiency decrements above 60% in the worst‐case scenario. Thus, these experimental measurements are employed for obtaining the power curves and estimating the annual energy production (AEP) of a 7.8‐kW‐rated SHAWT design by means of a BEM code. The simulations show a worst‐case scenario in which the AEP reduces above 70% when compared to the baseline configuration, with such a loss getting attenuated when a pitch‐regulated control is assumed. These results highlight the relevance of performing tests that consider the joint effect of turbulence and roughness.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136073301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind EnergyPub Date : 2023-09-07DOI: 10.1002/we.2860
Mandar Phadnis, D. Zalkind, Lucy Pao
{"title":"Advanced wind turbine control development using field test analysis for generator overspeed mitigation","authors":"Mandar Phadnis, D. Zalkind, Lucy Pao","doi":"10.1002/we.2860","DOIUrl":"https://doi.org/10.1002/we.2860","url":null,"abstract":"Turbulent and gusty wind conditions can cause generator overspeed peaks to exceed a threshold that then lead to wind turbine shutdowns, which then decrease the energy production of the wind turbines. We derive so‐called “gust measures” that predict when generator overspeed peaks may occur. These gust measures are then used to develop advanced controllers to mitigate generator overspeed peaks so that wind turbines can operate more robustly in difficult wind conditions without exceeding generator overspeed thresholds that would lead to turbine shutdown events. The advanced controllers are demonstrated in nonlinear aeroelastic simulations using the open‐source wind turbine simulation tool OpenFAST. To increase the realism of the simulations, they are run using field‐replicated wind conditions and a wind turbine model based on data from an experimental field campaign on a downscaled demonstrator of a novel extreme‐scale, two‐bladed, downwind rotor design.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49577537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind EnergyPub Date : 2023-09-07DOI: 10.1002/we.2863
Ming Huang, Yugandhar Vijaykumar Patil, Andrea Sciacchitano, C. Ferreira
{"title":"Experimental study of the wake interaction between two vertical axis wind turbines","authors":"Ming Huang, Yugandhar Vijaykumar Patil, Andrea Sciacchitano, C. Ferreira","doi":"10.1002/we.2863","DOIUrl":"https://doi.org/10.1002/we.2863","url":null,"abstract":"Wakes and wake interactions in wind turbine arrays diminish energy output and raise the risk of structural fatigue; hence, comprehending the features of rotor–wake interactions is of practical relevance. Previous studies suggest that vertical axis wind turbines (VAWTs) can facilitate a quicker wake recovery. This study experimentally investigates the rotor–wake and wake–wake interaction of VAWTs; different pitch angles of the blades of the upwind VAWT are considered to assess the interactions for different wake deflections. With stereoscopic particle image velocimetry, the wake interactions of two VAWTs are analysed in nine distinct wake deflection and rotor location configurations. The time‐average velocity fields at several planes upwind and downwind from the rotors are measured. Additionally, time‐average loads on the VAWTs are measured via force balances. The results validate the rapid wake recovery and the efficacy of wake deflection, which increases the available power in the second rotor.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44041103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind EnergyPub Date : 2023-09-03DOI: 10.1002/we.2862
Sacit Sarımurat
{"title":"Investigation of the effects of cyclic lateral load characteristics on monopiles in saturated sandy soils using hypoplastic material model","authors":"Sacit Sarımurat","doi":"10.1002/we.2862","DOIUrl":"https://doi.org/10.1002/we.2862","url":null,"abstract":"Offshore wind turbines play a critical role as a renewable energy source and are experiencing continuous growth in usage. Both the design and implementation phases of constructing these structures present difficulties. It is crucial to ensure these structures are built to resist such conditions, assuring their durability, as they are exposed to lateral external influences such as wind and wave loads. This study investigated how monopile foundations behave in saturated sandy soil under cyclic loading. Pore water pressure accumulations in saturated sandy soil, monopile head lateral displacements, and vertical settlements around the monopile are investigated using the hypoplastic material model and two‐phase element with the ANSYS finite element program. Analyses conducted in this study demonstrated that lateral cyclic loads could cause excessive pore water pressure accumulations around the monopile, leading to displacements in the monopile head and soil settlements around it, highlighting the importance of carefully considering loading characteristics during the design process to provide the security and longevity of offshore wind turbines.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46945858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind EnergyPub Date : 2023-08-28DOI: 10.1002/we.2848
Antonios Tempelis, Leon Mishnaevsky Jr.
{"title":"Erosion modelling on reconstructed rough surfaces of wind turbine blades","authors":"Antonios Tempelis, Leon Mishnaevsky Jr.","doi":"10.1002/we.2848","DOIUrl":"https://doi.org/10.1002/we.2848","url":null,"abstract":"Numerical simulations of rain droplet impacts on real rough surfaces of leading edges of wind turbine blades are presented. The effect of rough blade surface conditions during liquid impacts on the stress distribution in the protective coating is studied. Realistic rough surfaces of wind turbine blades, obtained from 3D reconstruction of real blades with photogrammetry, as well as artificially generated rough surfaces were introduced into finite element models of the droplet/blade coating interaction. Stress distributions in the protective coating with rough and flat surfaces were studied and compared. The results of the simulations suggest that roughness on the surface of the blade leads to increased stresses in the protective coating.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46318825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wind EnergyPub Date : 2023-08-28DOI: 10.1002/we.2861
Can Yang, Longfei Xiao, Peng Chen, Zhengshun Cheng, Mingyue Liu, Lei Liu
{"title":"An analytical frequency‐domain model of aerodynamic mass and damping of floating wind turbines","authors":"Can Yang, Longfei Xiao, Peng Chen, Zhengshun Cheng, Mingyue Liu, Lei Liu","doi":"10.1002/we.2861","DOIUrl":"https://doi.org/10.1002/we.2861","url":null,"abstract":"The fore‐aft motion of the rotor‐nacelle assembly (RNA) of a rotating floating wind turbine (FWT) can cause an oscillation in aerodynamic thrust, which may be equivalently treated as frequency‐dependent aerodynamic mass and damping effects. In this study, an explicit frequency‐domain analytical model is proposed to calculate the equivalent aerodynamic mass and damping of FWTs, with proper linearization of control system. Assuming that an FWT operates under steady wind conditions and a forced oscillation is exerted at the RNA along the wind direction, the thrust fluctuations are equivalently represented by the force and moment acting on the nacelle instead of pure aerodynamic loads. Based on the thrust oscillation expression, equivalent aerodynamic mass and damping are derived analytically. After verifying the model by numerical comparison, it is used to demonstrate equivalent aerodynamic mass and damping of three wind turbines (5–15 MW). Effects of wind turbine up‐scaling and controller dynamics are addressed. Results show that equivalent aerodynamic mass and damping present a nonlinear characteristic with oscillation frequency in the below‐rated region, while the relationship is close to linear for higher wind speeds. The effect of wind turbine up‐scaling has a visible impact on equivalent aerodynamic mass and damping, especially at near‐rated wind speed. Controller gains affect equivalent aerodynamic mass and damping and should be tuned reasonably in the controller design for FWTs. Outcomes of our study can be used to establish a frequency‐domain coupled model of FWTs and are beneficial for conceptual design and parameter optimization of the platform of FWTs.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42967858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}