Wind Energy最新文献

筛选
英文 中文
Feasibility study on a full‐scale wind turbine blade monitoring campaign: Comparing performance and robustness of features extracted from medium‐frequency active vibrations 全尺寸风力涡轮机叶片监测活动的可行性研究:比较从中频主动振动中提取的特征的性能和稳健性
IF 4.1 3区 工程技术
Wind Energy Pub Date : 2023-08-10 DOI: 10.1002/we.2854
M. A. Fremmelev, P. Ladpli, E. Orlowitz, N. Dervilis, M. McGugan, K. Branner
{"title":"Feasibility study on a full‐scale wind turbine blade monitoring campaign: Comparing performance and robustness of features extracted from medium‐frequency active vibrations","authors":"M. A. Fremmelev, P. Ladpli, E. Orlowitz, N. Dervilis, M. McGugan, K. Branner","doi":"10.1002/we.2854","DOIUrl":"https://doi.org/10.1002/we.2854","url":null,"abstract":"The present work investigates the performance of different features, extracted from vibration‐based data, for structural health monitoring of a 52‐meter wind turbine blade during fatigue testing. An active vibration monitoring system was used during the test campaign, providing periodic excitation of single frequencies in the medium‐frequency range, and using accelerometers to measure the vibration output on different parts of the blade. Based on previous work from the authors, data is available for the wind turbine blade in healthy state, with a manually induced damage, and with progressively increasing damage severity. Using the vibration data, different signal processing methods are used to extract damage‐sensitive features. Time series methods and time‐frequency domain methods are used to quantify the applied active vibration signal. Using outlier analysis, the health state of the blade is classified, and the classification accuracy through use of the different features is compared. Highest performance is generally obtained by auto‐regressive modeling of the vibration outputs, using the auto‐regressive parameters as features. Finally, suggestions for future improvements of the present method toward practical implementation are given.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45837029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convolutional neural network framework for wind turbine electromechanical fault detection 风电机电故障检测的卷积神经网络框架
IF 4.1 3区 工程技术
Wind Energy Pub Date : 2023-08-07 DOI: 10.1002/we.2857
Emilie Stone, S. Giani, D. Zappalá, C. Crabtree
{"title":"Convolutional neural network framework for wind turbine electromechanical fault detection","authors":"Emilie Stone, S. Giani, D. Zappalá, C. Crabtree","doi":"10.1002/we.2857","DOIUrl":"https://doi.org/10.1002/we.2857","url":null,"abstract":"Effective and timely health monitoring of wind turbine gearboxes and generators is essential to reduce the costs of operations and maintenance activities, especially offshore. This paper presents a scalable and lightweight convolutional neural network (CNN) framework using high‐dimensional raw condition monitoring data for the automatic detection of multiple wind turbine electromechanical faults. The proposed approach leverages the potential of combining information from a variety of signals to learn features and to discriminate the types of fault and their severity. As a result of the CNN layers used to extract features from the signals, this architecture works in the time domain and can digest high‐resolution multi‐sensor data streams in real‐time. To overcome the inherent black‐box nature of AI models, this research proposes two interpretability techniques, multidimensional scaling and layer‐wise relevance propagation, to analyse the proposed model's inner‐working and identify the signal features relevant for fault classification. Experimental results show high performance and classification accuracies above 99.9% for all fault cases tested, demonstrating the efficacy of the proposed fault‐detection system.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47376632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Real‐time rotor effective wind speed estimation based on actuator disc theory: Design and full‐scale experimental validation 基于传动盘理论的实时转子有效风速估计:设计和全尺寸实验验证
IF 4.1 3区 工程技术
Wind Energy Pub Date : 2023-07-29 DOI: 10.1002/we.2858
A. Lio, F. Meng, G. Larsen
{"title":"Real‐time rotor effective wind speed estimation based on actuator disc theory: Design and full‐scale experimental validation","authors":"A. Lio, F. Meng, G. Larsen","doi":"10.1002/we.2858","DOIUrl":"https://doi.org/10.1002/we.2858","url":null,"abstract":"{ The use of state estimation techniques offers a means of inferring rotor effective wind speed from standard measurements of wind turbines. Typical wind speed estimators rely upon a pre-computed quasi-steady aerodynamic mapping, which describes the relationship between pitch angle and tip-speed ratio and the power coefficient. In practice, the static mapping does not capture the influence of turbine structural dynamics and atmospheric turbulence, inevitably resulting in poor performance of the wind speed estimation. In addition, the turbine aerodynamic properties might not be easily accessible. Thus, this paper presents a rotor effective wind speed estimation method that obviates the requirement for prior knowledge of turbine power coefficients. Specifically, the proposed method exploits a simple actuator disc model, where the aerodynamic power and thrust coefficients can be characterised in terms of axial induction factors. Based on this insight and standard turbine measurements, real-time estimation of rotor effective wind speed and axial induction factors can then be achieved using a simplified turbine","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46301167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a wind turbine model and simulation platform using an acausal approach: Multiphysics modeling, validation, and control 使用辅助方法开发风力涡轮机模型和模拟平台:多物理建模、验证和控制
IF 4.1 3区 工程技术
Wind Energy Pub Date : 2023-07-16 DOI: 10.1002/we.2853
Mohammad Odeh, Kazi Mohsin, Tri D. Ngo, D. Zalkind, J. Jonkman, A. Wright, A. Robertson, Tuhin Das
{"title":"Development of a wind turbine model and simulation platform using an acausal approach: Multiphysics modeling, validation, and control","authors":"Mohammad Odeh, Kazi Mohsin, Tri D. Ngo, D. Zalkind, J. Jonkman, A. Wright, A. Robertson, Tuhin Das","doi":"10.1002/we.2853","DOIUrl":"https://doi.org/10.1002/we.2853","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45239896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new coupling of a GPU‐resident large‐eddy simulation code with a multiphysics wind turbine simulation tool 一种新的GPU驻留大涡模拟代码与多物理场风力机仿真工具的耦合
IF 4.1 3区 工程技术
Wind Energy Pub Date : 2023-07-14 DOI: 10.1002/we.2844
E. Taschner, M. Folkersma, Luis A Martínez‐Tossas, R. Verzijlbergh, J. van Wingerden
{"title":"A new coupling of a GPU‐resident large‐eddy simulation code with a multiphysics wind turbine simulation tool","authors":"E. Taschner, M. Folkersma, Luis A Martínez‐Tossas, R. Verzijlbergh, J. van Wingerden","doi":"10.1002/we.2844","DOIUrl":"https://doi.org/10.1002/we.2844","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48767954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Short‐term wind power prediction based on stacked denoised auto‐encoder deep learning and multi‐level transfer learning 基于叠加去噪自动编码器深度学习和多级迁移学习的短期风电预测
IF 4.1 3区 工程技术
Wind Energy Pub Date : 2023-07-13 DOI: 10.1002/we.2856
Xiaosheng Peng, Zimin Yang, Yinhuan Li, Bo Wang, Jianfeng Che
{"title":"Short‐term wind power prediction based on stacked denoised auto‐encoder deep learning and multi‐level transfer learning","authors":"Xiaosheng Peng, Zimin Yang, Yinhuan Li, Bo Wang, Jianfeng Che","doi":"10.1002/we.2856","DOIUrl":"https://doi.org/10.1002/we.2856","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49201646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modal analysis of an operational offshore wind turbine using enhanced Kalman filter‐based subspace identification 基于增强卡尔曼滤波器的子空间识别在海上风机模态分析中的应用
IF 4.1 3区 工程技术
Wind Energy Pub Date : 2023-07-12 DOI: 10.1002/we.2849
Aemilius A. W. van Vondelen, A. Iliopoulos, S. Navalkar, D. van der Hoek, J. van Wingerden
{"title":"Modal analysis of an operational offshore wind turbine using enhanced Kalman filter‐based subspace identification","authors":"Aemilius A. W. van Vondelen, A. Iliopoulos, S. Navalkar, D. van der Hoek, J. van Wingerden","doi":"10.1002/we.2849","DOIUrl":"https://doi.org/10.1002/we.2849","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49398054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The flow in the induction and entrance regions of lab‐scale wind farms 实验室规模风电场诱导区和入口区的流量
IF 4.1 3区 工程技术
Wind Energy Pub Date : 2023-07-11 DOI: 10.1002/we.2855
M. K. Vinnes, N. Worth, A. Segalini, R. J. Hearst
{"title":"The flow in the induction and entrance regions of lab‐scale wind farms","authors":"M. K. Vinnes, N. Worth, A. Segalini, R. J. Hearst","doi":"10.1002/we.2855","DOIUrl":"https://doi.org/10.1002/we.2855","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43160316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model‐free closed‐loop wind farm control using reinforcement learning with recursive least squares 使用递归最小二乘强化学习的无模型闭环风电场控制
IF 4.1 3区 工程技术
Wind Energy Pub Date : 2023-07-07 DOI: 10.1002/we.2852
J. Liew, T. Göçmen, W. Lio, G. Larsen
{"title":"Model‐free closed‐loop wind farm control using reinforcement learning with recursive least squares","authors":"J. Liew, T. Göçmen, W. Lio, G. Larsen","doi":"10.1002/we.2852","DOIUrl":"https://doi.org/10.1002/we.2852","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45042312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Bayesian reliability analysis exploring the effect of scheduled maintenance on wind turbine time to failure 贝叶斯可靠性分析探讨定期维护对风机故障时间的影响
IF 4.1 3区 工程技术
Wind Energy Pub Date : 2023-07-06 DOI: 10.1002/we.2846
Fraser Anderson, R. Dawid, D. McMillan, David García‐Cava
{"title":"A Bayesian reliability analysis exploring the effect of scheduled maintenance on wind turbine time to failure","authors":"Fraser Anderson, R. Dawid, D. McMillan, David García‐Cava","doi":"10.1002/we.2846","DOIUrl":"https://doi.org/10.1002/we.2846","url":null,"abstract":"","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49401662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信