Aero‐servo‐elastic co‐optimization of large wind turbine blades with distributed aerodynamic control devices

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
N. Abbas, P. Bortolotti, C. Kelley, J. Paquette, L. Pao, Nick Johnson
{"title":"Aero‐servo‐elastic co‐optimization of large wind turbine blades with distributed aerodynamic control devices","authors":"N. Abbas, P. Bortolotti, C. Kelley, J. Paquette, L. Pao, Nick Johnson","doi":"10.1002/we.2840","DOIUrl":null,"url":null,"abstract":"This work introduces automated wind turbine optimization techniques based on full aero-servo-elastic models and investigates the potential of trailing edge flaps to reduce the levelized cost of energy (LCOE) of wind turbines. The Wind Energy with Integrated Servo-control (WEIS) framework is improved to conduct the presented research. Novel methods for the generic implementation and tuning of trailing edge flap devices and their controller are also introduced. Primary flap and controller parameters are optimized to demonstrate potential maximum blade tip deflection reductions of 21 % . Concurrent design optimization (i.e., co-design) of a novel segmented wind turbine blade with trailing edge flaps and its controller is then conducted to demonstrate blade cost savings of 5 % . Additionally, rotor diameter co-design optimization is demonstrated to reduce the LCOE by 1.3 % without significant load increases to the tower. These results demonstrate the efficacy of control co-design optimization using trailing edge flaps, and the entirety of this work provides a foundation for numerous control co-design-oriented studies for distributed aerodynamic control devices.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/we.2840","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

Abstract

This work introduces automated wind turbine optimization techniques based on full aero-servo-elastic models and investigates the potential of trailing edge flaps to reduce the levelized cost of energy (LCOE) of wind turbines. The Wind Energy with Integrated Servo-control (WEIS) framework is improved to conduct the presented research. Novel methods for the generic implementation and tuning of trailing edge flap devices and their controller are also introduced. Primary flap and controller parameters are optimized to demonstrate potential maximum blade tip deflection reductions of 21 % . Concurrent design optimization (i.e., co-design) of a novel segmented wind turbine blade with trailing edge flaps and its controller is then conducted to demonstrate blade cost savings of 5 % . Additionally, rotor diameter co-design optimization is demonstrated to reduce the LCOE by 1.3 % without significant load increases to the tower. These results demonstrate the efficacy of control co-design optimization using trailing edge flaps, and the entirety of this work provides a foundation for numerous control co-design-oriented studies for distributed aerodynamic control devices.
采用分布式气动控制装置的大型风力涡轮机叶片气动伺服弹性协同优化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信