{"title":"View interpolation for image synthesis","authors":"Shenchang Eric Chen, L. Williams","doi":"10.1145/280811.281030","DOIUrl":"https://doi.org/10.1145/280811.281030","url":null,"abstract":"Image-space simplifications have been used to accelerate the calculation of computer graphic images since the dawn of visual simulation. Texture mapping has been used to provide a means by which images may themselves be used as display primitives. The work reported by this paper endeavors to carry this concept to its logical extreme by using interpolated images to portray three-dimensional scenes. The special-effects technique of morphing, which combines interpolation of texture maps and their shape, is applied to computing arbitrary intermediate frames from an array of prestored images. If the images are a structured set of views of a 3D object or scene, intermediate frames derived by morphing can be used to approximate intermediate 3D transformations of the object or scene. Using the view interpolation approach to synthesize 3D scenes has two main advantages. First, the 3D representation of the scene may be replaced with images. Second, the image synthesis time is independent of the scene complexity. The correspondence between images, required for the morphing method, can be predetermined automatically using the range data associated with the images. The method is further accelerated by a quadtree decomposition and a view-independent visible priority. Our experiments have shown that the morphing can be performed at interactive rates on today's high-end personal computers. Potential applications of the method include virtual holograms, a walkthrough in a virtual environment, image-based primitives and incremental rendering. The method also can be used to greatly accelerate the computation of motion blur and soft shadows cast by area light sources.","PeriodicalId":236803,"journal":{"name":"Seminal graphics: pioneering efforts that shaped the field","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114595659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interactive skeleton techniques for enhancing motion dynamics in key frame animation","authors":"N. Burtnyk, M. Wein","doi":"10.1145/280811.281001","DOIUrl":"https://doi.org/10.1145/280811.281001","url":null,"abstract":"A significant increase in the capability for controlling motion dynamics in key frame animation is achieved through skeleton control. This technique allows an animator to develop a complex motion sequence by animating a stick figure representation of an image. This control sequence is then used to drive an image sequence through the same movement. The simplicity of the stick figure image encourages a high level of interaction during the design stage. Its compatibility with the basic key frame animation technique permits skeleton control to be applied selectively to only those components of a composite image sequence that require enhancement.","PeriodicalId":236803,"journal":{"name":"Seminal graphics: pioneering efforts that shaped the field","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121043953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Models of light reflection for computer synthesized pictures","authors":"J. Blinn","doi":"10.1145/280811.280981","DOIUrl":"https://doi.org/10.1145/280811.280981","url":null,"abstract":"In the production of computer generated pictures of three dimensional objects, one stage of the calculation is the determination of the intensity of a given object once its visibility has been established. This is typically done by modelling the surface as a perfect diffuser, sometimes with a specular component added for the simulation of hilights. This paper presents a more accurate function for the generation of hilights which is based on some experimental measurements of how light reflects from real surfaces. It differs from previous models in that the intensity of the hilight changes with the direction of the light source. Also the position and shape of the hilights is somewhat different from that generated by simpler models. Finally, the hilight function generates different results when simulating metallic vs. nonmetallic surfaces. Many of the effects so generated are somewhat subtle and are apparent only during movie sequences. Some representative still frames from such movies are included.","PeriodicalId":236803,"journal":{"name":"Seminal graphics: pioneering efforts that shaped the field","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115853839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Illumination for computer generated pictures","authors":"Bui Tuong Phong","doi":"10.1145/280811.280980","DOIUrl":"https://doi.org/10.1145/280811.280980","url":null,"abstract":"The quality of computer generated images of three-dimensional scenes depends on the shading technique used to paint the objects on the cathode-ray tube screen. The shading algorithm itself depends in part on the method for modeling the object, which also determines the hidden surface algorithm. The various methods of object modeling, shading, and hidden surface removal are thus strongly interconnected. Several shading techniques corresponding to different methods of object modeling and the related hidden surface algorithms are presented here. Human visual perception and the fundamental laws of optics are considered in the development of a shading rule that provides better quality and increased realism in generated images.","PeriodicalId":236803,"journal":{"name":"Seminal graphics: pioneering efforts that shaped the field","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129745096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BE VISION, a package of IBM 7090 FORTRAN programs to draw orthographic views of combinations of plane and quadric surfaces","authors":"Ruth A. Weiss","doi":"10.1145/280811.280914","DOIUrl":"https://doi.org/10.1145/280811.280914","url":null,"abstract":"BE VISION is a package of FORTRAN programs for drawing orthographic views of combinations of plane and quadric surfaces. As input, the package takes rectangular coordinate equations specifying the surfaces plus a three-angle specification of the viewing direction. Output is a drawing on the Stromberg Carlson 4020 Microfilm Recorder. Many views of one scene may be obtained simply by changing the viewpoint. The various subroutines of the package and their functions are described in this paper. It also gives numerous examples of pictures that were produced by BE VISION. The package has been in use since April 1964.","PeriodicalId":236803,"journal":{"name":"Seminal graphics: pioneering efforts that shaped the field","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114192244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sketchpad—a man-machine graphical communication system","authors":"I. Sutherland","doi":"10.1145/280811.281031","DOIUrl":"https://doi.org/10.1145/280811.281031","url":null,"abstract":"The Sketchpad system makes it possible for a man and a computer to converse rapidly through the medium of line drawings. Heretofore, most interaction between man and computers has been slowed down by the need to reduce all communication to written statements that can be typed; in the past, we have been writing letters to rather than conferring with our computers. For many types of communication, such as describing the shape of a mechanical part or the connections of an electrical circuit, typed statements can prove cumbersome. The Sketchpad system, by eliminating typed statements (except for legends) in favor of line drawings, opens up a new area of man-machine communication.","PeriodicalId":236803,"journal":{"name":"Seminal graphics: pioneering efforts that shaped the field","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130339397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shade trees","authors":"R. L. Cook","doi":"10.1145/280811.280984","DOIUrl":"https://doi.org/10.1145/280811.280984","url":null,"abstract":"Shading is an important part of computer imagery, but shaders have been based on fixed models to which all surfaces must conform. As computer imagery becomes more sophisticated, surfaces have more complex shading characteristics and thus require a less rigid shading model. This paper presents a flexible tree-structured shading model that can represent a wide range of shading characteristics. The model provides an easy means for specifying complex shading characteristics. It is also efficient because it can tailor the shading calculations to each type of surface.","PeriodicalId":236803,"journal":{"name":"Seminal graphics: pioneering efforts that shaped the field","volume":"109 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122704153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Marching cubes: a high resolution 3D surface construction algorithm","authors":"W. Lorensen, H. Cline","doi":"10.1145/280811.281026","DOIUrl":"https://doi.org/10.1145/280811.281026","url":null,"abstract":"We present a new algorithm, called marching cubes, that creates triangle models of constant density surfaces from 3D medical data. Using a divide-and-conquer approach to generate inter-slice connectivity, we create a case table that defines triangle topology. The algorithm processes the 3D medical data in scan-line order and calculates triangle vertices using linear interpolation. We find the gradient of the original data, normalize it, and use it as a basis for shading the models. The detail in images produced from the generated surface models is the result of maintaining the inter-slice connectivity, surface data, and gradient information present in the original 3D data. Results from computed tomography (CT), magnetic resonance (MR), and single-photon emission computed tomography (SPECT) illustrate the quality and functionality of marching cubes. We also discuss improvements that decrease processing time and add solid modeling capabilities.","PeriodicalId":236803,"journal":{"name":"Seminal graphics: pioneering efforts that shaped the field","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122758122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A system for interactive graphical programming","authors":"W. Newman","doi":"10.1145/280811.281032","DOIUrl":"https://doi.org/10.1145/280811.281032","url":null,"abstract":"A system is described in this paper for developing graphical problem-oriented languages. This topic is of great importance in computer-aided design, but has hitherto received only sketchy documentation, with few attempts at a comparative study. Meanwhile displays are beginning to be used for design, and the results of such a study are badly needed. What has held back experimentation with computer graphics has been the difficulty of specifying new graphic techniques using the available programming languages; the method described in this paper appears to avoid this difficulty.","PeriodicalId":236803,"journal":{"name":"Seminal graphics: pioneering efforts that shaped the field","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129722218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compositing digital images","authors":"Thomas K. Porter, Tom Duff","doi":"10.1145/280811.281027","DOIUrl":"https://doi.org/10.1145/280811.281027","url":null,"abstract":"Most computer graphics pictures have been computed all at once, so that the rendering program takes care of all computations relating to the overlap of objects. There are several applications, however, where elements must be rendered separately, relying on compositing techniques for the anti-aliased accumulation of the full image. This paper presents the case for four-channel pictures, demonstrating that a matte component can be computed similarly to the color channels. The paper discusses guidelines for the generation of elements and the arithmetic for their arbitrary compositing.","PeriodicalId":236803,"journal":{"name":"Seminal graphics: pioneering efforts that shaped the field","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121364599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}