Vibrational Spectroscopy最新文献

筛选
英文 中文
Photonic data analysis in 2050 2050 年的光子数据分析
IF 2.5 3区 化学
Vibrational Spectroscopy Pub Date : 2024-03-22 DOI: 10.1016/j.vibspec.2024.103685
Oleg Ryabchykov , Shuxia Guo , Thomas Bocklitz
{"title":"Photonic data analysis in 2050","authors":"Oleg Ryabchykov ,&nbsp;Shuxia Guo ,&nbsp;Thomas Bocklitz","doi":"10.1016/j.vibspec.2024.103685","DOIUrl":"https://doi.org/10.1016/j.vibspec.2024.103685","url":null,"abstract":"<div><p>Photonic data analysis is a field at the intersection of imaging, spectroscopy, machine learning, and computer science. The diversity of both data types and application scenarios requires flexibility in the methods applied, combining a full range of computational methods, from classical chemometric techniques to state-of-the-art deep learning solutions. Interdisciplinary and international collaborations are needed to accelerate the progress of photonic data science. An underlying data infrastructure and standardization will be needed to provide collaborative platforms for research on data comparability, enabling the integration of novel photonic techniques into routine applications. The increasing complexity of the questions being investigated requires the application of more sophisticated data-driven models, which may only be optimized for large data sets. Unfortunately, novel techniques in the early stages of development can rarely provide a variability of measured samples sufficient to build a generalizable complex model. To overcome this problem, state-of-the-art methods will emerge for working with extremely limited or unbalanced data, as well as for dealing with device-to-device variations. Further developments are also foreseen in computable artificial intelligence methods, which will allow the validation of models of any architecture by comparing them with the knowledge of the researchers.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103685"},"PeriodicalIF":2.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924203124000389/pdfft?md5=fe9bf8c51c25d870945948f367f42528&pid=1-s2.0-S0924203124000389-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140191089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherent Raman spectroscopy: Quo vadis? 相干拉曼光谱:何去何从?
IF 2.5 3区 化学
Vibrational Spectroscopy Pub Date : 2024-03-21 DOI: 10.1016/j.vibspec.2024.103684
K. Brzozowski , W. Korona , A. Nowakowska , A. Borek-Dorosz , A. Pieczara , B. Orzechowska , A. Wislocka-Orlowska , Michael Schmitt , J. Popp , M. Baranska
{"title":"Coherent Raman spectroscopy: Quo vadis?","authors":"K. Brzozowski ,&nbsp;W. Korona ,&nbsp;A. Nowakowska ,&nbsp;A. Borek-Dorosz ,&nbsp;A. Pieczara ,&nbsp;B. Orzechowska ,&nbsp;A. Wislocka-Orlowska ,&nbsp;Michael Schmitt ,&nbsp;J. Popp ,&nbsp;M. Baranska","doi":"10.1016/j.vibspec.2024.103684","DOIUrl":"https://doi.org/10.1016/j.vibspec.2024.103684","url":null,"abstract":"<div><p>Although the potential of Coherent Raman Spectroscopy (CRS) in the area of biomedicine, life sciences and material sciences has been well demonstrated, its wide-spread practical application is still rather limited. The two main CRS techniques are Coherent Anti-Stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) spectroscopy or microscopy. Here we present the current state of the art and challenges facing CRS. Although many technological challenges have been addressed to date, showing how to improve resolution, sensitivity and selectivity of CRS, significant efforts are still needed to increase the awareness of these techniques in the academic community, develop reliable protocols, and extend them to practical applications. For this purpose it is also necessary to initiate national and international research networks that can significantly contribute to the development of CRS approaches in areas that have so far made little use of CRS alongside other Raman spectroscopic methods. The purpose of this perspective paper is to present the current state-of-the-art of CRS with a historical background, assess the challenges and present some future development visions.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103684"},"PeriodicalIF":2.5,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924203124000377/pdfft?md5=368ab33f16b74bd34d8aeea18dd9eca1&pid=1-s2.0-S0924203124000377-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140191088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating the future of ROA: Can it surprise us? 探索投资回报率的未来:它会给我们带来惊喜吗?
IF 2.5 3区 化学
Vibrational Spectroscopy Pub Date : 2024-03-21 DOI: 10.1016/j.vibspec.2024.103683
Carin R. Lightner , Agnieszka Kaczor , Christian Johannessen
{"title":"Navigating the future of ROA: Can it surprise us?","authors":"Carin R. Lightner ,&nbsp;Agnieszka Kaczor ,&nbsp;Christian Johannessen","doi":"10.1016/j.vibspec.2024.103683","DOIUrl":"10.1016/j.vibspec.2024.103683","url":null,"abstract":"<div><p>Raman optical activity (ROA) has truly reached middle age at 50 years. The technique has matured significantly in this period, both with respect to instrument development and number of applications and users. Yet, ROA is still viewed as an auxiliary technique, compared to conventional Raman and infrared absorption spectroscopies. In this perspective, we outline the newest trends in the field of ROA, including exciting opportunities for future developments and of course ask the important question: what is the future of ROA?</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103683"},"PeriodicalIF":2.5,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140273049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mobile guardians: Detection of food fraud with portable spectroscopy methods for enhanced food authenticity assurance 移动卫士:利用便携式光谱分析方法检测食品欺诈,提高食品真实性的保证程度
IF 2.5 3区 化学
Vibrational Spectroscopy Pub Date : 2024-03-21 DOI: 10.1016/j.vibspec.2024.103673
Joe Stradling, Howbeer Muhamadali, Royston Goodacre
{"title":"Mobile guardians: Detection of food fraud with portable spectroscopy methods for enhanced food authenticity assurance","authors":"Joe Stradling,&nbsp;Howbeer Muhamadali,&nbsp;Royston Goodacre","doi":"10.1016/j.vibspec.2024.103673","DOIUrl":"10.1016/j.vibspec.2024.103673","url":null,"abstract":"<div><p>It is often said that “you are what you eat”, and whether this is said in this decade or in 2050 the choices we make about the food we consume can alter our biology. Therefore, knowing exactly what you eat is important for one to maintain a healthy balanced diet. However, as the food industry grows in complexity and struggles to meet the demand of a rapidly increasing population, it is likely that food fraud will pose a much larger threat to the future safety of food industries and consumers. Thus, it is necessary to employ and develop analytical techniques such as infrared and Raman spectroscopy as mobile ‘Capable Guardians’ to reduce this potential risk. Recent advancements in portable spectroscopic instrumentation which can provide rapid on-site measurements show promise, and may have a pivotal role to play in the ongoing saga of food fraud and contamination. Therefore, the objective of this review is to present a comprehensive overview of food fraud and contamination, highlighting the common analytical methods employed for their assessment, with a specific emphasis on the utility of portable handheld spectroscopic instrumentation which in the future can offer guardianship and thus ensure personalised food security.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103673"},"PeriodicalIF":2.5,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924203124000262/pdfft?md5=053ac593b4c47a1027c6e7f1df63637b&pid=1-s2.0-S0924203124000262-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140281825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes in the structure of hard tissues of the lower third molars at different stages of eruption according to IR spectroscopy data 根据红外光谱数据分析下第三磨牙不同萌出阶段硬组织结构的变化
IF 2.5 3区 化学
Vibrational Spectroscopy Pub Date : 2024-03-19 DOI: 10.1016/j.vibspec.2024.103682
Andrey S. Korshunov , Vladimir D. Vagner , Kirill N. Kuryatnikov , Denis V. Solomatin , Lyudmila V. Bel’skaya
{"title":"Changes in the structure of hard tissues of the lower third molars at different stages of eruption according to IR spectroscopy data","authors":"Andrey S. Korshunov ,&nbsp;Vladimir D. Vagner ,&nbsp;Kirill N. Kuryatnikov ,&nbsp;Denis V. Solomatin ,&nbsp;Lyudmila V. Bel’skaya","doi":"10.1016/j.vibspec.2024.103682","DOIUrl":"10.1016/j.vibspec.2024.103682","url":null,"abstract":"<div><p>The structure of the hard tissues of the lower third molars (enamel, dentin, enamel-dentin junction) at different stages of eruption in the presence/absence of connective tissue dysplasia as a factor that can affect not only odontogenesis, but also teething was analyzed using infrared (IR) spectroscopy. A technique for deconvolution of IR spectra of hard dental tissues has been developed. It has been established that the differences between the stages of eruption are due to changes in the mineral component (phosphate ions) for all dental tissues, while for the enamel-dentin junction an important contribution is made by fluctuations in the methyl and methylene groups of organic compounds, for dentin the contribution of collagen absorption bands is shown. The differences between the stages of tooth eruption increase in the following order: dentin, enamel-dentin junction, enamel. It can be assumed that in the early stages of tooth formation, it is with the participation of collagen proteins that changes in the structure of dentin occur, which subsequently causes changes in the enamel-dentin junction and enamel. Changes in the enamel are subtler and appear only with additional processing of the IR spectra using mathematical methods.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103682"},"PeriodicalIF":2.5,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140181795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Far- and mid-infrared FT-IR analysis of the single-crystal pentacene using a linearly polarized synchrotron radiation light source 利用线性偏振同步辐射光源对单晶五碳烯进行远红外和中红外傅立叶变换红外分析
IF 2.5 3区 化学
Vibrational Spectroscopy Pub Date : 2024-03-19 DOI: 10.1016/j.vibspec.2024.103681
Yasuo Nakayama , Junnosuke Miyamoto , Kaname Yamauchi , Yuya Baba , Fumitsuna Teshima , Kiyohisa Tanaka
{"title":"Far- and mid-infrared FT-IR analysis of the single-crystal pentacene using a linearly polarized synchrotron radiation light source","authors":"Yasuo Nakayama ,&nbsp;Junnosuke Miyamoto ,&nbsp;Kaname Yamauchi ,&nbsp;Yuya Baba ,&nbsp;Fumitsuna Teshima ,&nbsp;Kiyohisa Tanaka","doi":"10.1016/j.vibspec.2024.103681","DOIUrl":"https://doi.org/10.1016/j.vibspec.2024.103681","url":null,"abstract":"<div><p>Understanding and control of molecular vibrations are essential aspects for both fundamental and application considerations of organic semiconductor electronics. The reason is that the organic electronic devices are driven by diverse electronic processes in molecular solids, such as charge carrier transport and excitonic progression, that are strongly influenced by coupling with vibrations. In the present study, molecular vibrations of single-crystals of pentacene, a representative organic semiconductor material, were examined in the far- to mid-infrared range by means of Fourier transform infrared (FT-IR) spectroscopy using a linearly polarized synchrotron radiation light source. The IR absorption spectra exhibited significant modulation depending on the crystalline in-plane azimuthasl angle of <strong>c</strong>*-oriented single-crystal pentacene.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103681"},"PeriodicalIF":2.5,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140181393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid analysis of eucalyptus oil adulteration in Moroccan rosemary essential oil via GC-FID and mid-infrared spectroscopy 通过 GC-FID 和中红外光谱快速分析摩洛哥迷迭香精油中的桉叶油掺假情况
IF 2.5 3区 化学
Vibrational Spectroscopy Pub Date : 2024-03-15 DOI: 10.1016/j.vibspec.2024.103674
Abdennacer El Mrabet , Aimen El Orche , Abderrahim Diane , Joel B. Johnson , Amal Ait Haj Said , Mustapha Bouatia , Ibrahim Sbai-Elotmani
{"title":"Rapid analysis of eucalyptus oil adulteration in Moroccan rosemary essential oil via GC-FID and mid-infrared spectroscopy","authors":"Abdennacer El Mrabet ,&nbsp;Aimen El Orche ,&nbsp;Abderrahim Diane ,&nbsp;Joel B. Johnson ,&nbsp;Amal Ait Haj Said ,&nbsp;Mustapha Bouatia ,&nbsp;Ibrahim Sbai-Elotmani","doi":"10.1016/j.vibspec.2024.103674","DOIUrl":"10.1016/j.vibspec.2024.103674","url":null,"abstract":"<div><p>Essential Oil (EO) extracted from Rosemary is known for its therapeutic, antifungal, stimulant and antibacterial effects. This study aimed to detect and quantify the adulteration of Rosemary essential oil with different percentages of eucalyptus essential oil, using two analytical techniques: gas chromatography with Flame Ionization Detection (GC-FID) and Fourier Transform Mid-infrared spectroscopy (FT-MIR), combined with chemometric tools such as Principal Component Analysis (PCA), Partial Least Squares regression (PLS-R) and support vector regression (SVR). The use of PCA on the results obtained from GC-FID and FT-MIR indicates the possibility of categorizing the data into two distinct groups: adulterated essential oil and non-adulterated essential oil. However, it is noted that GC-FID can only detect adulteration starting from 40%, while spectroscopy is capable of detecting lower percentages of adulteration. The use of PLS-R and SVR calibration models for adulteration quantification demonstrates high performance capabilities for both techniques (GC-FID and FT-MIR), as indicated by high R2 correlation coefficients indicating good fit, with lower root mean square error (RMSE) values demonstrating predictive accuracy. The results suggest that FT-MIR spectroscopy is preferable to GC-FID for the quantification and discrimination of adulterated essential oils. FT-MIR spectroscopy is considered superior to GC-FID due to its non-destructiveness, speed and lack of sample preparation.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103674"},"PeriodicalIF":2.5,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140181815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Escherichia coli research on Raman measurement mechanism and diagnostic model 大肠杆菌拉曼测量机理与诊断模型研究
IF 2.5 3区 化学
Vibrational Spectroscopy Pub Date : 2024-03-12 DOI: 10.1016/j.vibspec.2024.103670
Dongyu Ma , Xiaoyu Zhao , Chunjie Wang , Haoxuan Li , Yue Zhao , Lijing Cai , Jinming Liu , Liang Tong
{"title":"Escherichia coli research on Raman measurement mechanism and diagnostic model","authors":"Dongyu Ma ,&nbsp;Xiaoyu Zhao ,&nbsp;Chunjie Wang ,&nbsp;Haoxuan Li ,&nbsp;Yue Zhao ,&nbsp;Lijing Cai ,&nbsp;Jinming Liu ,&nbsp;Liang Tong","doi":"10.1016/j.vibspec.2024.103670","DOIUrl":"10.1016/j.vibspec.2024.103670","url":null,"abstract":"<div><p>Escherichia coli (E. coli) is one of the most important pathogenic bacteria causing poultry diseases, characterized by a wide distribution range, rapid spread, and high mortality rate. Early diagnosis of E. coli in poultry feces provides the possibility for targeted treatment and rapid recovery of diseased poultry, and more importantly, prevents the rapid spread of pathogens among densely bred poultry. In order to implement rapid, low-cost, and high-frequency detection of E. coli, this study explored the feasibility of Raman spectroscopy. Firstly, theoretical configurations and density functional calculations of N-acetylmuramic acid and N-acetylglucosamine in the cell wall of E. coli were performed. Then, Raman measurement models for E. coli were established based on two feature extraction methods (Successive Projections Algorithm, Competitive Adaptive Reweighted Sampling) and four modeling methods (Random Forest Algorithm, Convolutional Neural Networks, Back Propagation Neural Networks, Radial Basis Function). Finally, a method based on the extraction of Raman spectral features using density functional theory was determined to optimize the existing models, and it was demonstrated that this feature variable extraction method improved the accuracy of all four measurement models to some extent. Ultimately, the optimal model, the improved SPA-RF, was obtained through comparative analysis, with an accuracy, precision, recall, specificity, FNR, FDR, and AUC of 98.38%, 98.61%, 99.83%, 88.08%, 0.81%, 11.82%, and 1, respectively. This study reports an early method for the early treatment of E. coli diseases and provides a molecular structure database for studying N-acetylmuramic acid and N-acetylglucosamine, as well as a basis for vibrational spectroscopy detection of E. coli diseases, promoting the application of Raman spectroscopy technology in the diagnosis of livestock diseases.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103670"},"PeriodicalIF":2.5,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140125223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning algorithms for in-line monitoring during yeast fermentations based on Raman spectroscopy 基于拉曼光谱的酵母发酵过程在线监测机器学习算法
IF 2.5 3区 化学
Vibrational Spectroscopy Pub Date : 2024-03-12 DOI: 10.1016/j.vibspec.2024.103672
Debiao Wu , Yaying Xu , Feng Xu, Minghao Shao, Mingzhi Huang
{"title":"Machine learning algorithms for in-line monitoring during yeast fermentations based on Raman spectroscopy","authors":"Debiao Wu ,&nbsp;Yaying Xu ,&nbsp;Feng Xu,&nbsp;Minghao Shao,&nbsp;Mingzhi Huang","doi":"10.1016/j.vibspec.2024.103672","DOIUrl":"10.1016/j.vibspec.2024.103672","url":null,"abstract":"<div><p>Given the intricacies and nonlinearity inherent to industrial fermentation systems, the application of process analytical technology presents considerable benefits for the direct, real-time monitoring, control, and assessment of synthetic processes. In this study, we introduce an in-line monitoring approach utilizing Raman spectroscopy for ethanol production by Saccharomyces cerevisiae. Initially, we employed feature selection techniques from the realm of machine learning to reduce the dimensionality of the Raman spectral data. Our findings reveal that feature selection results in a noteworthy reduction of over 90% in model training time, concurrently enhancing the predictive performance of glycerol and cell concentration by 14.20% and 17.10% at the root mean square error (RMSE) level. Subsequently, we conducted model retraining using 15 machine learning algorithms, with hyperparameters optimized through grid search. Our results illustrate that the post-hyperparameter adjustment model exhibits improvements in RMSE for ethanol, glycerol, glucose, and biomass by 9.73%, 4.33%, 22.22%, and 13.79%, respectively. Finally, specific machine learning algorithms, namely BaggingRegressor, Support Vector Regression, BayesianRidge, and VotingRegressor, were identified as suitable models for predicting glucose, ethanol, glycerol, and cell concentrations, respectively. Notably, the coefficient of determination (R<sup>2</sup>) ranged from 0.89 to 0.97, and RMSE values ranged from 0.06 to 2.59 g/L on the testing datasets. The study highlights machine learning's effectiveness in Raman spectroscopy data analysis for improved industrial fermentation monitoring, enhancing efficiency, and offering novel modeling insights.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103672"},"PeriodicalIF":2.5,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140125389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectralomics – Towards a holistic adaptation of label free spectroscopy 光谱组学--实现无标记光谱学的整体调整
IF 2.5 3区 化学
Vibrational Spectroscopy Pub Date : 2024-03-12 DOI: 10.1016/j.vibspec.2024.103671
Hugh J. Byrne
{"title":"Spectralomics – Towards a holistic adaptation of label free spectroscopy","authors":"Hugh J. Byrne","doi":"10.1016/j.vibspec.2024.103671","DOIUrl":"https://doi.org/10.1016/j.vibspec.2024.103671","url":null,"abstract":"<div><p>Vibrational spectroscopy, largely based on infrared absorption and Raman scattering techniques, is much vaunted as a label free approach, delivering a high content, holistic characterisation of a sample, with demonstrable applications in a broad range of fields, from process analytical technologies and preclinical drug screening, to disease diagnostics, therapeutics, prognostics and personalised medicine. However, in the analysis of such complex systems, a trend has emerged in which spectral analysis is reduced to the identification of individual peaks, based on reference tables of assignments derived from literature, which are then interpreted as biomarkers. More sophisticated analysis attempts to unmix the spectrum of the complex mixture into constituent components, which are then used to characterise the biochemistry of a sample and changes to it, in terms of its constituent components. Data mining the spectra, and in particular change due to kinetic processes, remains a challenge, and it is proposed that the rate of temporal evolution of the combination spectrum can be used in itself as a label by which to guide the spectral analysis. Ultimately, it is argued that the true potential of label free spectroscopy is best harnessed in a truly “spectralomic” approach, by which the spectral signature of an “event”, such as drug intercalation in the DNA of the nucleus of a cell, or a key stage of a cellular pathway such as oxidative stress, is presented. It is envisioned that, in the future, such Spectralomics pathway analysis will be fully integrated with similar omics approaches, potentially ultimately through deep learning algorithms, and underpinned by systems biology kinetic models, to provide a living human cell atlas, describing the function and dysfunction of organism at a cellular level, as the basis for improved healthcare.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103671"},"PeriodicalIF":2.5,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924203124000249/pdfft?md5=3e298b42baa0e3cf33e5568c7cf42913&pid=1-s2.0-S0924203124000249-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140113498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信