{"title":"Evolution of vibrational biospectroscopy: multimodal techniques and miniaturisation supported by machine learning","authors":"Aaron Mclean, Thulya Chakkumpulakkal Puthan Veettil, Magdalena Giergiel, Bayden R. Wood","doi":"10.1016/j.vibspec.2024.103708","DOIUrl":"10.1016/j.vibspec.2024.103708","url":null,"abstract":"<div><p>The field of vibrational biospectroscopy has undergone continuous evolution, advancing from its earliest pioneers to the current innovators. Emerging frontier technologies have enabled vibrational biospectroscopy to reach new heights, expanding its applications in biomedical and clinical settings. Key advancements include the incorporation of multimodal spectroscopy, improvements in spatial resolution and the miniaturization of spectrometers coupled with machine learning. Multimodal spectroscopy is a growing subfield within vibrational biospectroscopy, offering different perspectives of the same sample to better understand the origins of vibrational modes. Meanwhile, the miniaturization of spectrometers has opened the door for field studies and personalized diagnostics, made possible by the integration of machine learning. The combination of miniaturized spectrometers and machine learning has paved the way for novel disease detection approaches. This review will discuss the historical progression of vibrational biospectroscopy and its potential for future applications, with a particular focus on the use of machine learning, multimodal spectroscopy, and miniaturized spectrometers in biomedicine. The primary goal of this review is to provide insight into the prospects of vibrational biospectroscopy, identify gaps in the current literature for future applications, and assess the potential impact of this field in the biomedical domain.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"133 ","pages":"Article 103708"},"PeriodicalIF":2.5,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924203124000614/pdfft?md5=a01ac887caddfe04f44cc36db9af7837&pid=1-s2.0-S0924203124000614-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141404522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mid-infrared gas absorption spectroscopy using a silicon germanium waveguide based chirped supercontinuum","authors":"Proficiency Munsaka, Peter Baricholo","doi":"10.1016/j.vibspec.2024.103705","DOIUrl":"10.1016/j.vibspec.2024.103705","url":null,"abstract":"<div><p>We report the simulations of coherent supercontinuum generation from 2.63 to 8.04 μm in a silicon germanium photonic waveguide. The influence of input quantum noise pulses on coherence of the generated spectra was investigated. A high value of first order degree of coherence (i.e. 0.98) on supercontinuum spectra was predicted numerically. Our mid-infrared simulated coherent chirped supercontinuum source was then used as the input light source in absorption spectroscopy of carbon dioxide and methane gases. The simulated absorbance spectra for these greenhouse gases have high molecular contrast, thanks to the intense, chirped supercontinuum used.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"133 ","pages":"Article 103705"},"PeriodicalIF":2.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141274991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chandan Bhai Patel , Satyabratt Pandey , Sachin K. Singh , K. Vikram , Ranjan K. Singh
{"title":"Probing the mesophase formation in thermotropic liquid crystal HBDBA using temperature-dependent Raman spectroscopy and DFT method","authors":"Chandan Bhai Patel , Satyabratt Pandey , Sachin K. Singh , K. Vikram , Ranjan K. Singh","doi":"10.1016/j.vibspec.2024.103696","DOIUrl":"10.1016/j.vibspec.2024.103696","url":null,"abstract":"<div><p>Liquid crystalline properties of the synthesized liquid crystal (LC) N-(o-hydroxybenzylidene)-N'-(4-n-alkoxybenzylidene) azines (HBDBA) are probed thoroughly using the comprehensive array of techniques e.g. differential scanning calorimetry (DSC), differential thermal analysis (DTA), polarizing optical microscopy (POM), temperature-dependent Raman spectroscopy and density functional theory (DFT) method. In this study, intricate molecular interactions crucial for mesophase formation of liquid crystalline system HBDBA and molecular rearrangement that occurs during LC transitions are unravelled comprehensively. Remarkably, at the Cr → SmA phase transition, the peak position, linewidth, and intensity of signature Raman bands are prominently changed. A thorough analysis of Raman marker bands and DFT calculation confirm the disruption of intramolecular hydrogen bonds in HBDBA at the Cr → SmA transition. The conclusion of the present study enriches the understanding of the underlying mechanisms of mesophase formation and intricate molecular interactions and arrangement at the molecular level of the thermotropic LC.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"133 ","pages":"Article 103696"},"PeriodicalIF":2.5,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141278644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qifeng Li , Yunpeng Yang , Jianing Wu , Chunsheng Wei , Hua Xia , Yangguang Han , Yinguo Huang , Xiangyun Ma
{"title":"Dual-branch transfer learning in Raman spectroscopy for bacterial quantitative analysis","authors":"Qifeng Li , Yunpeng Yang , Jianing Wu , Chunsheng Wei , Hua Xia , Yangguang Han , Yinguo Huang , Xiangyun Ma","doi":"10.1016/j.vibspec.2024.103695","DOIUrl":"https://doi.org/10.1016/j.vibspec.2024.103695","url":null,"abstract":"<div><p>Accurate quantification of bacteria is critical for ensuring food safety, advancing biomedical research, and a range of other pressing concerns. Raman spectroscopy is a popular technique for quantitative analysis due to its benefits of being fast, non-destructive, and highly sensitive. However, the accuracy of the transfer model is often limited by factors such as differences in equipment and environmental noise, which limits the popularization of Raman spectroscopy. In this paper, we propose an approach that overcomes this challenge by introducing a dual branch network based on Continuous Wavelet Transform (CWT) for model transfer. Our model comprises dual branches that perform distinct tasks. The spectral learning branch is responsible for extracting features from the spectral domain. The time-frequency map learning branch employs CNNs for extracting the multi-scale information-rich features. The proposed method is used for the quantitative analysis of Escherichia coli. The proposed approach significantly outperforms traditional methods in improving prediction accuracy. It offers a much-needed solution to the long-standing challenge of Raman spectroscopy in the field of bacterial quantitative analysis. With our approach, we can expect to see Raman spectroscopy more widely adopted in the future.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"133 ","pages":"Article 103695"},"PeriodicalIF":2.5,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141286556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crystal violet degradation by visible light-driven AgNP/TiO2 hybrid photocatalyst tracked by SERRS spectroscopy","authors":"Rafael de Oliveira , Antonio Carlos Sant’Ana","doi":"10.1016/j.vibspec.2024.103694","DOIUrl":"https://doi.org/10.1016/j.vibspec.2024.103694","url":null,"abstract":"<div><p>Dyes are important concerns regarding aquatic environmental contamination given their extensive industrial use and the occurrence of highly toxic and carcinogenic effects on the biota. In this work, photodegradation processes of the organic dye crystal violet (CV) by a hybrid plasmonic photocatalyst involving titanium dioxide (TiO<sub>2</sub>) and silver nanoparticles (AgNP), through irradiation with low-power visible light were studied, and the experiments were tracked by ultraviolet-visible absorption (UV–VIS) and surface-enhanced resonance Raman scattering (SERRS) spectroscopies. Enhanced photocatalytic activity was observed, reaching about 71, 80 and 87 % of CV removal with only 100 minutes of irradiation, depending on the Ag loading used. The high photocatalytic efficiency is further highlighted by the low energy consumption in the process, requiring only ca. 1.46 kW h L<sup>-1</sup> in the best reaction condition. Quantum-mechanical calculations were used to the assignment of electronic spectra, as well as to the prediction of frontier molecular orbitals and atomic charges, aiming to propose mechanisms for radical attacks. Such results allow suggesting degradation processes involved mainly N-demethylation and bond breaking of central carbon. The presence of CV protonated species was also supported through Density Functional Theory (DFT) investigation. The integration of theoretical and experimental results allows proposing the formation of pararosaniline, phenol and benzophenone derivatives, which may have highest ecotoxicity than the original contaminant, outstanding the remarkable relevance of SERRS spectroscopy in monitoring such recalcitrant substances.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"133 ","pages":"Article 103694"},"PeriodicalIF":2.5,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141239810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valeria Cardamuro , Bahar Faramarzi , Martina Moggio , Valerio Cosimo Elia , Marianna Portaccio , Nadia Diano , Lorenzo Manti , Maria Lepore
{"title":"Analysis of the X-ray induced changes in lipids extracted from hepatocarcinoma cells by means of ATR-FTIR spectroscopy","authors":"Valeria Cardamuro , Bahar Faramarzi , Martina Moggio , Valerio Cosimo Elia , Marianna Portaccio , Nadia Diano , Lorenzo Manti , Maria Lepore","doi":"10.1016/j.vibspec.2024.103697","DOIUrl":"https://doi.org/10.1016/j.vibspec.2024.103697","url":null,"abstract":"<div><p>Radiation therapy, particularly X-ray-based treatment, is widely used against cancer due to its ability to induce cell death, hence local tumor control Recently, increasing attention has been devoted to the role of lipid metabolism in the radiation-induced response of tumor cells. This study utilized Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy to examine the role of lipids in the response of hepatocarcinoma (HepG2) cells to X-ray radiation. Infrared spectra were acquired from lipids extracted from HepG2 cells exposed to different X-ray doses (0, 2, and 6 Gy). Results showed that X-ray exposure causes shifts in the peak positions in infrared spectra indicating biochemical changes in lipid components. The phosphate group asymmetric stretching band shifted to higher wave numbers in the 2 and 6 Gy exposed samples, likely due to alterations in membrane fluidity. The 2-Gy exposure led a reduction of sphingolipid, phospholipid, and fatty acid contributions that can be probably ascribed to apoptosis processes. The 6-Gy exposure triggered also changes in sphingolipid content potentially linked to increased lipid peroxidation supported by higher carbonyl contribution. This peroxidation results in smaller lipid fragments and various degradation products. The changes in sphingolipids are also confirmed by the analysis of different ratios between the areas of selected bands and the results of a mass spectroscopy investigation carried out on the same samples.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103697"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141240133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue-Song Huo, Pu Chen, Jing-Yan Li, Yu-Peng Xu, Dan Liu, Xiao-Li Chu
{"title":"Comparative study of linear and nonlinear calibration algorithm for extrapolation ability of near infrared spectroscopy quantitative analysis","authors":"Xue-Song Huo, Pu Chen, Jing-Yan Li, Yu-Peng Xu, Dan Liu, Xiao-Li Chu","doi":"10.1016/j.vibspec.2024.103693","DOIUrl":"10.1016/j.vibspec.2024.103693","url":null,"abstract":"<div><p>The determination of the o-nitrotoluene (o-MNT) content in separation process of mononitrotoluene (MNT) is of interest, since it affects the purity of m-nitrotoluene (m-MNT) and p-nitrotoluene (p-MNT). In real-world applications, the calibration model inevitably requires dealing with complex extrapolation problems. Therefore, this study extracted the spectral features of the o-nitrotoluene based on the interval selection algorithm. The linear calibration method (partial least squares (PLS)) and nonlinear calibration methods (support vector machine (SVM), back propagation (BP), random forest (RF), extreme learning machine (ELM)) were used to build the calibration models based on o-nitrotoluene samples in different concentration ranges, and the prediction accuracy and robustness of the calibration model were compared. The results indicate that the effectiveness of different calibration methods is different when going from prediction accuracy to robustness. The prediction accuracy and robustness of RF models are not satisfactory. BP models, which are capable of producing very accurate results in terms of prediction accuracy, are not able to solve extrapolation problems. PLS model has more advantages in model prediction accuracy. ELM has shown the best behavior in terms of robustness of model, but is inferior to PLS in terms of prediction accuracy.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103693"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Júlio César Silva , Talysson Felismino Moura , Raimundo Luiz da Silva Pereira , Thiago Sampaio de Freitas , Janaína Esmeraldo Rocha , Henrique Douglas Melo Coutinho , Gustavo Miguel Siqueira , Daniel Sampaio Alves , Gabriel Gonçalves Alencar , Isaac Moura Araújo , Ana Kamila Medeiros Lima , Paulo de Tarso Cavalcante Freire , Francisco Ferreira de Sousa , Gilberto Dantas Saraiva , Maísa Freire Cartaxo Pires de Sá , Francisco Nascimento Pereira Junior , João Hermínio da Silva
{"title":"FTIR analysis and antimicrobial activity of sodium tungstate and calcium tungstate","authors":"Júlio César Silva , Talysson Felismino Moura , Raimundo Luiz da Silva Pereira , Thiago Sampaio de Freitas , Janaína Esmeraldo Rocha , Henrique Douglas Melo Coutinho , Gustavo Miguel Siqueira , Daniel Sampaio Alves , Gabriel Gonçalves Alencar , Isaac Moura Araújo , Ana Kamila Medeiros Lima , Paulo de Tarso Cavalcante Freire , Francisco Ferreira de Sousa , Gilberto Dantas Saraiva , Maísa Freire Cartaxo Pires de Sá , Francisco Nascimento Pereira Junior , João Hermínio da Silva","doi":"10.1016/j.vibspec.2024.103691","DOIUrl":"10.1016/j.vibspec.2024.103691","url":null,"abstract":"<div><p>In recent years, many antibacterial agents have been produced with the aim of eradicating infectious diseases, but many of these agents are ineffective against the resistance presented by bacteria. It is currently estimated that more than 60 % of current antibiotics are ineffective, so the discovery of new drugs is vital. Among the compounds studied in recent years are polyoxotungstates, inorganic compounds targeted for their pharmacological properties. The aim of this study was therefore to chemically characterize two tungstates: calcium and sodium, and to evaluate their microbiological properties, both in combination with antibiotics and due to their ability to reverse the resistance process represented by the expression of the enzyme betalactamase. The microbiological tests were carried out using the microdilution technique, with colorimetric disclosure, using resazurin, and the chemical characterization and vibrational modes of the compounds were evaluated using Fourier transform infrared spectroscopy with attenuated total reflectance. Calcium tungstate showed four spectroscopic bands, located between 84 and 1915 cm<sup>−1</sup>, while sodium tungstate showed two bands at 335 and 935 cm<sup>−1</sup>. Calcium tungstate intensified the effect of gentamicin against the bacterium <em>Escherichia coli</em> 06, as well as reversing the mechanism of enzymatic resistance presented by the bacteria <em>Staphylococcus aureus</em> K-4100 and K-4414. Given the current scenario of resistance, these results represent new alternatives for the treatment of bacterial infections, allowing a better understanding of the properties of polyoxometalates. These results are unprecedented as far as the literature is concerned.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103691"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141042245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tamara Leskovar , Ivan Jerman , Irena Zupanič Pajnič
{"title":"Unveiling intra-skeletal variability in mature and immature human skeletal remains via ATR-FTIR spectroscopy","authors":"Tamara Leskovar , Ivan Jerman , Irena Zupanič Pajnič","doi":"10.1016/j.vibspec.2024.103688","DOIUrl":"https://doi.org/10.1016/j.vibspec.2024.103688","url":null,"abstract":"<div><p>Molecular characteristics of skeletal remains were studied utilizing ATR-FTIR spectroscopy, focusing on comparisons between mature adult and immature non-adult skeletal elements. To cover the intra-skeletal variability, different types of bones were analysed. The objective was to identify significant differences between various skeletal elements of adults and non-adults. Additionally, the correlation between observed differences and DNA preservation was investigated. Despite exposure to taphonomic factors, findings indicate minimal diagenetic changes or a well-balanced alteration in mineral and collagen within bones. The identified differences primarily reflect functional and structural differences among various skeletal elements. Significant differences between adults and non-adults, or lack of it, is attributed to different paths of bone maturation from childhood to adulthood. High DNA preservation in non-adult petrous bones was attributed to the interplay between DNA and carbonates, both occupying hydroxyl sites in the lattice. Conversely, lower DNA content in other bones, especially non-adult bones, was correlated with high relative concentrations of collagen, in which DNA is less stable and more prone to degradation. This study highlights the importance of skeletal variation (inter, intra, developmental stage) when assessing the preservation state of the remains and choosing samples for further analyses such as DNA. For the first time, differences between mature adult and immature non-adult bones are included.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103688"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924203124000419/pdfft?md5=82e247653a0bd8e0fafb2501e85869d1&pid=1-s2.0-S0924203124000419-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140893556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuwen Zhao , Zhiyao Li , Yueling Yan , Youqing Wen , Ying Ning , Zheng Li , Haixia Wang
{"title":"Discriminant analysis of a mixture of pathogenic bacteria into different types and proportions by surface-enhanced Raman scattering spectroscopy combined with chemometric methods","authors":"Yuwen Zhao , Zhiyao Li , Yueling Yan , Youqing Wen , Ying Ning , Zheng Li , Haixia Wang","doi":"10.1016/j.vibspec.2024.103692","DOIUrl":"10.1016/j.vibspec.2024.103692","url":null,"abstract":"<div><p>Accurate identification and discrimination of bacteria is crucial for ensuring food safety and reducing pathogenic infections. This study presents a novel approach that combines surface-enhanced Raman scattering spectroscopy (SERS) with chemometric methods for discriminant analysis of a mixture of pathogenic bacteria into different types and proportions. Au@Ag@SiO<sub>2</sub> composite nanomaterials were employed as the SERS substrate to collect Raman spectra of multiple pathogenic bacteria. Partial least squares discriminant analysis (PLS-DA) and orthogonal partial least squares discriminant analysis (OPLS-DA) methods were combined with standard normal variate (SNV) to discriminate the different species of mixed bacteria and the multiple proportion mixed bacterial samples, respectively. The results showed that SNV-PLS-DA had good classification performance in the discriminant analysis of different species of mixed bacteria, with an accuracy of 92% for the external test set. Furthermore, both SNV-PLS-DA and SNV-OPLS-DA models exhibited excellent classification performance in the discrimination of multiple pathogenic bacteria at different mixing proportions, achieving 100% accuracy in the external test set, but except for mixed samples of <em>Escherichia coli</em> and <em>Salmonella typhimurium</em>. Our method demonstrates the accurate capability of the SERS platform combined with chemometric methods in the discriminant analysis of multiple pathogenic bacteria at different species and mixing proportions, which provides novel insights for the synchronous analysis of multiple pathogenic bacteria.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"132 ","pages":"Article 103692"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141054874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}