{"title":"Mid-infrared gas absorption spectroscopy using a silicon germanium waveguide based chirped supercontinuum","authors":"Proficiency Munsaka, Peter Baricholo","doi":"10.1016/j.vibspec.2024.103705","DOIUrl":null,"url":null,"abstract":"<div><p>We report the simulations of coherent supercontinuum generation from 2.63 to 8.04 μm in a silicon germanium photonic waveguide. The influence of input quantum noise pulses on coherence of the generated spectra was investigated. A high value of first order degree of coherence (i.e. 0.98) on supercontinuum spectra was predicted numerically. Our mid-infrared simulated coherent chirped supercontinuum source was then used as the input light source in absorption spectroscopy of carbon dioxide and methane gases. The simulated absorbance spectra for these greenhouse gases have high molecular contrast, thanks to the intense, chirped supercontinuum used.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"133 ","pages":"Article 103705"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203124000584","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report the simulations of coherent supercontinuum generation from 2.63 to 8.04 μm in a silicon germanium photonic waveguide. The influence of input quantum noise pulses on coherence of the generated spectra was investigated. A high value of first order degree of coherence (i.e. 0.98) on supercontinuum spectra was predicted numerically. Our mid-infrared simulated coherent chirped supercontinuum source was then used as the input light source in absorption spectroscopy of carbon dioxide and methane gases. The simulated absorbance spectra for these greenhouse gases have high molecular contrast, thanks to the intense, chirped supercontinuum used.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.