Albert B Kao, Shoubhik Chandan Banerjee, Fritz A Francisco, Andrew M Berdahl
{"title":"Timing decisions as the next frontier for collective intelligence.","authors":"Albert B Kao, Shoubhik Chandan Banerjee, Fritz A Francisco, Andrew M Berdahl","doi":"10.1016/j.tree.2024.06.003","DOIUrl":"10.1016/j.tree.2024.06.003","url":null,"abstract":"<p><p>The past decade has witnessed a growing interest in collective decision making, particularly the idea that groups can make more accurate decisions compared with individuals. However, nearly all research to date has focused on spatial decisions (e.g., food patches). Here, we highlight the equally important, but severely understudied, realm of temporal collective decision making (i.e., decisions about when to perform an action). We illustrate differences between temporal and spatial decisions, including the irreversibility of time, cost asymmetries, the speed-accuracy tradeoff, and game theoretic dynamics. Given these fundamental differences, temporal collective decision making likely requires different mechanisms to generate collective intelligence. Research focused on temporal decisions should lead to an expanded understanding of the adaptiveness and constraints of living in groups.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":"904-912"},"PeriodicalIF":16.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jake M Robinson, Andrew D Barnes, Nicole Fickling, Sofie Costin, Xin Sun, Martin F Breed
{"title":"Food webs in food webs: the micro-macro interplay of multilayered networks.","authors":"Jake M Robinson, Andrew D Barnes, Nicole Fickling, Sofie Costin, Xin Sun, Martin F Breed","doi":"10.1016/j.tree.2024.06.006","DOIUrl":"10.1016/j.tree.2024.06.006","url":null,"abstract":"<p><p>Food webs are typically defined as being macro-organism-based (e.g., plants, mammals, birds) or microbial (e.g., bacteria, fungi, viruses). However, these characterizations have limits. We propose a multilayered food web conceptual model where microbial food webs are nested within food webs composed of macro-organisms. Nesting occurs through host-microbe interactions, which influence the health and behavior of host macro-organisms, such that host microbiomes likely alter population dynamics of interacting macro-organisms and vice versa. Here, we explore the theoretical underpinnings of multilayered food webs and the implications of this new conceptual model on food web ecology. Our framework opens avenues for new empirical investigations into complex ecological networks and provides a new lens through which to view a network's response to ecosystem changes.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":"913-922"},"PeriodicalIF":16.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The new society for modeling and theory in population biology","authors":"Gili Greenbaum, Oana Carja","doi":"10.1016/j.tree.2024.08.008","DOIUrl":"https://doi.org/10.1016/j.tree.2024.08.008","url":null,"abstract":"No Abstract","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":"67 1","pages":""},"PeriodicalIF":16.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katelyn T. Faulkner, Philip E. Hulme, John R.U. Wilson
{"title":"Harder, better, faster, stronger? Dispersal in the Anthropocene","authors":"Katelyn T. Faulkner, Philip E. Hulme, John R.U. Wilson","doi":"10.1016/j.tree.2024.08.010","DOIUrl":"https://doi.org/10.1016/j.tree.2024.08.010","url":null,"abstract":"<p>The dispersal of organisms in the Anthropocene has been profoundly altered by human activities, with far-reaching consequences for humans, biodiversity, and ecosystems. Managing such dispersal effectively is critical to achieve the 2030 targets of the Kunming–Montreal Global Biodiversity Framework. Here, we bring together insights from invasion science, movement ecology, and conservation biology, and extend a widely used classification framework for the introduction pathways of alien species to encompass other forms of dispersal. We develop a simple, global scheme for classifying the movement of organisms into the types of dispersal that characterise the Anthropocene. The scheme can be used to improve our understanding of dispersal, provide policy relevant advice, inform conservation and biosecurity actions, and enable monitoring and reporting towards conservation targets.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":"15 1","pages":""},"PeriodicalIF":16.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beyond modular enhancers: new questions in cis-regulatory evolution","authors":"Jeanne M.C. McDonald, Robert D. Reed","doi":"10.1016/j.tree.2024.07.005","DOIUrl":"https://doi.org/10.1016/j.tree.2024.07.005","url":null,"abstract":"<p>Our understanding of how <em>cis</em>-regulatory elements work has advanced rapidly, outpacing our evolutionary models. In this review, we consider the implications of new mechanistic findings for evolutionary developmental biology. We focus on three different debates: whether evolutionary innovation occurs more often via the modification of old <em>cis</em>-regulatory elements or the emergence of new ones; the extent to which individual elements are specific and autonomous or multifunctional and interdependent; and how the robustness of <em>cis</em>-regulatory architectures influences the rate of trait evolution. These discussions lead us to propose new questions for the evo-devo of <em>cis</em>-regulation.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":"12 1","pages":""},"PeriodicalIF":16.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oscar Schofield, Megan Cimino, Scott Doney, Ari Friedlaender, Michael Meredith, Carlos Moffat, Sharon Stammerjohn, Benjamin Van Mooy, Deborah Steinberg
{"title":"Antarctic pelagic ecosystems on a warming planet","authors":"Oscar Schofield, Megan Cimino, Scott Doney, Ari Friedlaender, Michael Meredith, Carlos Moffat, Sharon Stammerjohn, Benjamin Van Mooy, Deborah Steinberg","doi":"10.1016/j.tree.2024.08.007","DOIUrl":"https://doi.org/10.1016/j.tree.2024.08.007","url":null,"abstract":"<p>High-latitude pelagic marine ecosystems are vulnerable to climate change because of the intertwining of sea/continental ice dynamics, physics, biogeochemistry, and food-web structure. Data from the West Antarctic Peninsula allow us to assess how ice influences marine food webs by modulating solar inputs to the ocean, inhibiting wind mixing, altering the freshwater balance and ocean stability, and providing a physical substrate for organisms. State changes are linked to an increase in storm forcing and changing distribution of ocean heat. Changes ripple through the plankton, shifting the magnitude of primary production and its community composition, altering the abundance of krill and other prey essential for marine mammals and seabirds. These climate-driven changes in the food web are being exacerbated by human activity.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":"48 1","pages":""},"PeriodicalIF":16.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victoria Reyes-García, Crystal Arnold, Sonia Graham
{"title":"Indigenous Peoples provide alternative approaches to managing biological invasions.","authors":"Victoria Reyes-García, Crystal Arnold, Sonia Graham","doi":"10.1016/j.tree.2024.07.008","DOIUrl":"10.1016/j.tree.2024.07.008","url":null,"abstract":"<p><p>Biological invasions are a main threat to biodiversity. Seebens et al. find that Indigenous Peoples' lands host 30% fewer alien species than other lands. This finding calls for additional examination of the drivers of such difference, from Indigenous Peoples' land management practices to the values that guide relations with nature.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":"790-792"},"PeriodicalIF":16.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nutrient dilution and the future of herbivore populations.","authors":"Michael Kaspari, Ellen A R Welti","doi":"10.1016/j.tree.2024.05.001","DOIUrl":"10.1016/j.tree.2024.05.001","url":null,"abstract":"<p><p>Nutrient dilution (ND) - the decrease in the concentration of nutritional elements in plant tissue - arises from an increase in the mass of carbohydrates and/or a decrease in the 20+ essential elements. Increasing CO<sub>2</sub> levels and its promotion of biomass are linked to nutrient dilution. We build a case for nutrient dilution as a key driver in global declines in herbivore abundance. Herbivores must build element-rich animal tissue from nutrient-poor plant tissue, and their abundance commonly increases with fertilization of both macro- and micronutrients. We predict the global impacts of nutrient dilution will be magnified in some of Earth's most biodiverse, highly productive, and/or nutrient-poor ecosystems and should favor specific traits of herbivores, including sap-feeding and ruminant microbiomes.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":"809-820"},"PeriodicalIF":16.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}