{"title":"Myeloarchitectonic maps of the human cerebral cortex registered to surface and sections of a standard atlas brain.","authors":"Juergen K Mai, Milan Majtanik","doi":"10.1515/tnsci-2022-0325","DOIUrl":"10.1515/tnsci-2022-0325","url":null,"abstract":"<p><p>C. and O. Vogt had set up a research program with the aim of establishing a detailed cartography of the medullary fiber distribution of the human brain. As part of this program, around 200 cortical fields were differentiated based on their myeloarchitectural characteristics and mapped with regard to their exact location in the isocortex. The typical features were graphically documented and classified by a sophisticated linguistic coding. Their results have only recently received adequate attention and applications. The reasons for the revival of this spectrum of their research include interest in the myeloarchitecture of the cortex as a differentiating feature of the cortex architecture and function, as well as the importance for advanced imaging methodologies, particularly tractography and molecular imaging. Here, we describe our approach to exploit the original work of the Vogts and their co-workers to construct a myeloarchitectonic map that is referenced to the Atlas of the Human Brain (AHB) in standard space. We developed a semi-automatic pipeline for processing and integrating the various original maps into a single coherent map. To optimize the precision of the registration between the published maps and the AHB, we augmented the maps with topographic landmarks of the brains that were originally analyzed. Registration of all maps into the AHB opened several possibilities. First, for the majority of the fields, multiple maps from different authors are available, which allows for sophisticated statistical integration, for example, unification with a label-fusion technique. Second, each field in the myeloarchitectonic surface map can be visualized on the myelin-stained cross-section of the AHB at the best possible correspondence. The features of each field can be correlated with the fiber-stained cross-sections in the AHB and with the extensive published materials from the Vogt school and, if necessary, corrected. Third, mapping to the AHB allows the relationship between fiber characteristics of the cortex and the subcortex to be examined. Fourth, the cytoarchitectonic maps from Brodmann and von Economo and Koskinas, which are also registered to the AHB, can be compared. This option allows the study of the correspondence between cyto- and myeloarchitecture in each field. Finally, by using our \"stripe\" technology - where any other feature registered to the same space can be directly compared owing to the linear and parallel representation of the correlated cortex segments - this map becomes part of a multidimensional co-registration platform.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220325"},"PeriodicalIF":2.1,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751573/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139049365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Éva Simon, Csaba Csipkés, Dániel Andráskó, Veronika Kovács, Zoltán Szabó-Maák, Béla Tankó, Gyula Buchholcz, Béla Fülesdi, Csilla Molnár
{"title":"Preoperatively administered single dose of dexketoprofen decreases pain intensity on the first 5 days after craniotomy: A single-centre placebo-controlled, randomized trial.","authors":"Éva Simon, Csaba Csipkés, Dániel Andráskó, Veronika Kovács, Zoltán Szabó-Maák, Béla Tankó, Gyula Buchholcz, Béla Fülesdi, Csilla Molnár","doi":"10.1515/tnsci-2022-0323","DOIUrl":"10.1515/tnsci-2022-0323","url":null,"abstract":"<p><strong>Background and purpose: </strong>Headache attributed to craniotomy is an underestimated and under-treated condition. Previous studies confirmed the efficacy of preemptive analgesia with non-steroidal anti-inflammatory agents. The aim of the present work was to test the hypothesis of whether a single preoperatively administered dose of dexketoprofen (DEX) has the potency to decrease postcraniotomy headache (PCH) as compared to placebo (PL).</p><p><strong>Patients and methods: </strong>This is a single-centre, randomized, PL-controlled trial comparing the effect of a single oral dose of 25 mg DEX to PL on the intensity of PCH. Patients undergoing craniotomy were randomly allocated to DEX and PL groups. Patients rated their actual and worst daily pain using visual analogue scale (VAS) scores during intrahospital treatment (0-5 days) and 30 and 90 days postoperatively.</p><p><strong>Results: </strong>Two hundred patients were included. DEX decreased the worst daily pain intensity in the first 24 h only; the 5-days cumulative score of actual pain was 9.7 ± 7.9 cm for the DEX group and 12.6 ± 10.5 cm for the PL group, respectively (<i>p</i> = 0.03). This difference disappeared in the late, 30-, and 90-day follow-up period. No differences in VAS scores could be detected in supra- and infratentorial cases among the DEX and PL groups.</p><p><strong>Conclusions: </strong>A single preoperative dose of 25 mg of DEX slightly decreases the intensity of PCH in the first 5 days after craniotomy but it does not have an effect on chronic headaches and postoperative analgesic requirements.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220323"},"PeriodicalIF":2.1,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139049377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanopharmacology as a new approach to treat neuroinflammatory disorders.","authors":"Sebastián García Menéndez, Walter Manucha","doi":"10.1515/tnsci-2022-0328","DOIUrl":"10.1515/tnsci-2022-0328","url":null,"abstract":"<p><p>Neuroinflammation, a complex process involving the activation of microglia, astrocytes, and other immune cells in the brain, plays a role in neurodegeneration and psychiatric disorders. Current therapeutic strategies for neuroinflammation are limited, necessitating the development of improved approaches. Nanopharmacology offers unprecedented opportunities to access and treat neuroinflammatory disorders at the brain level. Nanoscaffolds can target specific cells or tissues and protect drugs from degradation or elimination, making them ideal candidates for treating neurodegenerative and psychiatric diseases. Recent advancements in nanoparticle development have enabled the targeting of microglia, astrocytes, and other immune cells in the brain, reducing neuroinflammation and protecting neurons from injury. Nanoparticles targeting specific neurons have also been developed. Clinical trials are in progress to evaluate the safety and efficacy of nano drugs for treating neuroinflammatory, neurodegenerative, and psychiatric diseases. The successful development of these nanodrugs holds immense promise for treating these devastating and increasingly prevalent conditions. On the other hand, several limitations and unanswered questions remain. First, the long-term effects of nanoparticles on the brain need to be thoroughly investigated to ensure their safety. Second, optimizing the targeting and delivery of nanoparticles to specific brain regions remains a challenge. Understanding the complex interplay between nanoparticles and the brain's immune system is crucial for developing effective nanotherapies. Despite these limitations, nanopharmacology presents a transformative approach to treating neuroinflammatory disorders. Future research should address the aforementioned limitations and further elucidate the mechanisms of nanoparticle-mediated therapy. The successful development of safe and effective nanodrugs can revolutionize the treatment of neuroinflammatory disorders, alleviating the suffering of millions.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220328"},"PeriodicalIF":2.1,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751572/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139049366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EGCG promotes the sensory function recovery in rats after dorsal root crush injury by upregulating KAT6A and inhibiting pyroptosis.","authors":"Jianjun Wang, Zuer Yu, Yichun Hu, Fuyu Li, Xiaoyu Huang, Xiangyue Zhao, Yaqi Tang, Shujuan Fang, Yinjuan Tang","doi":"10.1515/tnsci-2022-0326","DOIUrl":"10.1515/tnsci-2022-0326","url":null,"abstract":"<p><p>Dorsal root injury usually leads to irreversible sensory function loss and lacks effective treatments. (-)-epigallocatechin-3-gallate (EGCG) is reported to exert neuroprotective roles in the nervous systems. However, the function of EGCG in treating dorsal root injury remains unclear. Hence, we built the dorsal root crush injury (DRCI) rat model to be treated with EGCG, followed by the western blot, Enzyme-linked immunosorbent assay, and sensory behavior tests. We observed that EGCG can upregulate the Lysine acetyltransferase 6A (KAT6A) level and inhibit the pyroptosis, indicated by downregulated gasdermin-D, caspase-1, and interleukin 18 protein levels, and alleviate the neuropathic pain, indicated by the decreased paw withdraw threshold in Plantar test and decreased paw withdraw latency in von Frey test, and downregulated calcitonin gene-related peptide, nerve growth factor, and c-Fos protein levels. But EGCG cannot alleviate the neuropathic pain when the KAT6A was inhibited by CTX-0124143 and pyroptosis was activated by Miltirone. These combined results indicated that EGCG can promote the sensory function recovery in rats after DRCI via upregulating KAT6A and inhibiting pyroptosis, laying the foundation for EGCG to be a novel candidate for the treatment of dorsal root injury.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220326"},"PeriodicalIF":2.1,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139049364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting functional outcome in acute ischemic stroke patients after endovascular treatment by machine learning.","authors":"Zhenxing Liu, Renwei Zhang, Keni Ouyang, Botong Hou, Qi Cai, Yu Xie, Yumin Liu","doi":"10.1515/tnsci-2022-0324","DOIUrl":"10.1515/tnsci-2022-0324","url":null,"abstract":"<p><strong>Background: </strong>Endovascular therapy (EVT) was the standard treatment for acute ischemic stroke with large vessel occlusion. Prognosis after EVT is always a major concern. Here, we aimed to explore a predictive model for patients after EVT.</p><p><strong>Method: </strong>A total of 156 patients were retrospectively enrolled. The primary outcome was functional dependence (defined as a 90-day modified Rankin Scale score ≤ 2). Least absolute shrinkage and selection operator and univariate logistic regression were used to select predictive factors. Various machine learning algorithms, including multivariate logistic regression, linear discriminant analysis, support vector machine, <i>k</i>-nearest neighbors, and decision tree algorithms, were applied to construct prognostic models.</p><p><strong>Result: </strong>Six predictive factors were selected, namely, age, baseline National Institute of Health Stroke Scale (NIHSS) score, Alberta Stroke Program Early CT (ASPECT) score, modified thrombolysis in cerebral infarction score, symptomatic intracerebral hemorrhage (sICH), and complications (pulmonary infection, gastrointestinal bleeding, and cardiovascular events). Based on these variables, various models were constructed and showed good discrimination. Finally, a nomogram was constructed by multivariate logistic regression and showed a good performance.</p><p><strong>Conclusion: </strong>Our nomogram, which was composed of age, baseline NIHSS score, ASPECT score, recanalization status, sICH, and complications, showed a very good performance in predicting outcome after EVT.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220324"},"PeriodicalIF":2.1,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138462851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PPARα agonist fenofibrate prevents postoperative cognitive dysfunction by enhancing fatty acid oxidation in mice.","authors":"Tiantian Liu, Xinlu Chen, Ziqi Wei, Xue Han, Yujia Liu, Zhengliang Ma, Tianjiao Xia, Xiaoping Gu","doi":"10.1515/tnsci-2022-0317","DOIUrl":"https://doi.org/10.1515/tnsci-2022-0317","url":null,"abstract":"<p><strong>Background: </strong>Due to high rates of incidence and disability, postoperative cognitive dysfunction (POCD) currently receives a lot of clinical attention. Disturbance of fatty acid oxidation is a potential pathophysiological manifestation underlying POCD. Peroxisome proliferator-activated receptor α (PPARα) is a significant transcription factor of fatty acid oxidation that facilitates the transfer of fatty acids into the mitochondria for oxidation. The potential role of PPARα intervention in POCD warrants consideration.</p><p><strong>Objective: </strong>The present study is aimed to investigate whether PPARα agonist fenofibrate (FF) could protect long-term isoflurane anesthesia-induced POCD model and to explore the potential underlying function of fatty acid oxidation in the process.</p><p><strong>Methods: </strong>We established the POCD model via 6 h long-term isoflurane anesthesia <i>in vivo</i> with C57BL/6J mice and <i>in vitro</i> with N2a cells. Cells and mice were pretreated with PPARα agonist FF before anesthesia, after which fatty acid oxidation and cognitive function were assessed. The level of fatty acid oxidation-related proteins was determined using western blotting. The contextual fear conditioning test was utilized to evaluate mice's learning and memory.</p><p><strong>Results: </strong>Our results showed that 6 h long-term isoflurane anesthesia induced contextual memory damage in mice, accompanied by decreases of fatty acid oxidation-related proteins (peroxisome proliferator-activated receptor γ coactivator 1α, carnitine palmitoyltransferase 1A, and PPARα) both in the hippocampus of POCD mice and in N2a cells. In the N2a cell model, pretreatment of PPARα agonist FF led to the upregulation of fatty acid oxidation-related proteins. <i>In vivo</i> results showed that preconditioned FF reached similar effects. More crucially, FF has been shown to reduce cognitive damage in mice after long-term isoflurane anesthesia. Additionally, our data showed that after blocking fatty acid oxidation by Etomoxir, FF failed to protect cognitive function from long-term isoflurane anesthesia.</p><p><strong>Conclusions: </strong>Pretreatment of PPARα agonist FF can protect against long-term isoflurane anesthesia-induced POCD by enhancing fatty acid oxidation.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220317"},"PeriodicalIF":2.1,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138462850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Zhao, Jingyi Yang, Jie Yang, Hongying Jiang, Yecai Qin, Qian Lei
{"title":"Evaluation of the improvement of walking ability in patients with spinal cord injury using lower limb rehabilitation robots based on data science.","authors":"Hui Zhao, Jingyi Yang, Jie Yang, Hongying Jiang, Yecai Qin, Qian Lei","doi":"10.1515/tnsci-2022-0320","DOIUrl":"10.1515/tnsci-2022-0320","url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a serious disabling injury, and the main factors causing SCI in patients include car accidents, falls from heights, as well as heavy blows and falls. These factors can all cause spinal cord compression or even complete rupture. After SCI, problems with the movement, balance, and walking ability of the lower limbs are most common, and SCI can cause abnormalities in patient's movement, sensation, and other aspects. Therefore, in the treatment of SCI, it is necessary to strengthen the rehabilitation training (RT) of patients based on data science to improve their motor ability and play a positive role in the recovery of their walking ability. This article used lower limb rehabilitation robot (LLRR) to improve the walking ability of SCI patients and applied them to SCI rehabilitation. The purpose is to improve the limb movement function of patients by imitating and assisting their limb movements, thereby achieving pain relief and muscle strength enhancement and promoting rehabilitation. The experimental results showed that the functional ambulation category (FAC) scale scores of Group A and Group B were 0.79 and 0.81, respectively, in the first 10 weeks of the experiment. After 10 weeks of the experiment, the FAC scores of Group A and Group B were 2.42 and 4.36, respectively. After the experiment, the FAC score of Group B was much higher than that of Group A, indicating that Group B was more effective in improving patients' walking ability compared to Group A. This also indicated that LLRR rehabilitation training can enhance the walking ability of SCI patients.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220320"},"PeriodicalIF":2.1,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10638838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89719639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Du, Minhui Xu, Yan Su, Yujia Liu, Yiming Zhou, Xiaoping Gu, Tianjiao Xia
{"title":"Long-term sevoflurane exposure relieves stress-enhanced fear learning and anxiety in PTSD mice.","authors":"Ying Du, Minhui Xu, Yan Su, Yujia Liu, Yiming Zhou, Xiaoping Gu, Tianjiao Xia","doi":"10.1515/tnsci-2022-0313","DOIUrl":"https://doi.org/10.1515/tnsci-2022-0313","url":null,"abstract":"<p><strong>Objectives: </strong>Post-traumatic stress disorder (PTSD) is characterized by recurrent episodes of severe anxiety after exposure to traumatic events. It is believed that these episodes are triggered at least in part by environmental stimuli associated with the precipitating trauma through classical conditioning, termed conditioned fear. However, traditional methods of conditioned fear memory extinction are frequently ineffective for PTSD treatment due to the contribution of non-associative sensitization caused by trauma. Anesthetics have shown promise for treating various psychiatric diseases such as depression.</p><p><strong>Methods: </strong>In this study, we examined if the inhaled anesthetic sevoflurane can suppress stress-enhanced fear learning (SEFL) in PTSD model mice. Model mice exposed to 2.4% sevoflurane for 6 h exhibited reduced freezing time and behavioral anxiety compared to sham-treated model mice. To explore the underlying mechanisms, we evaluated the regional expression levels of glucocorticoid receptors (GRs), cannabinoid CB1 receptors (CB1Rs), D1 dopamine receptors (D1Rs), and D2 dopamine receptors (D2Rs).</p><p><strong>Results: </strong>We verified that both GR and CB1R were significantly upregulated in the hippocampus, amygdaloid nucleus, and prefrontal cortex (PFC) of model mice, while D1R and D2R were downregulated. All of these expression changes were partially normalized in the PFC by 6 h but not with 2 h sevoflurane exposure.</p><p><strong>Conclusions: </strong>These results showed that sevoflurane exposure following traumatic events may be an effective treatment for PTSD.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220313"},"PeriodicalIF":2.1,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71414014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Bao, Xiao-Mei Lan, Guo-Qing Zhang, Xi Bao, Bo Li, Dan-Na Ma, Hong-Yan Luo, Shi-Lu Cao, Shun-Yao Liu, E Jing, Jian-Zhong Zhang, Ya-Li Zheng
{"title":"Cdk5 activation promotes Cos-7 cells transition towards neuronal-like cells.","authors":"Li Bao, Xiao-Mei Lan, Guo-Qing Zhang, Xi Bao, Bo Li, Dan-Na Ma, Hong-Yan Luo, Shi-Lu Cao, Shun-Yao Liu, E Jing, Jian-Zhong Zhang, Ya-Li Zheng","doi":"10.1515/tnsci-2022-0318","DOIUrl":"https://doi.org/10.1515/tnsci-2022-0318","url":null,"abstract":"<p><strong>Objectives: </strong>Cyclin-dependent kinase 5 (Cdk5) activity is specifically active in neurogenesis, and Cdk5 and neocortical neurons migration related biomarker are expressed in Cos-7 cells. However, the function of Cdk5 on the transformation of immortalized Cos-7 cells into neuronal-like cells is not clear.</p><p><strong>Methods: </strong>Cdk5 kinase activity was measured by [γ-<sup>32</sup>P] ATP and p81 phosphocellulose pads based method. The expression of neuron liker markers was evaluated by immunofluorescence, real-time PCR, Western blot, and Elisa.</p><p><strong>Results: </strong>P35 overexpression upregulated Cdk5 kinase activity in Cos-7 cells. p35 mediated Cdk5 expression promoted the generation of nerite-like outgrowth. Compared with the empty vector, p35-induced Cdk5 activation resulted in time-dependent increase in neuron-like marker, including Tau, NF-H, NF-H&M, and TuJ1. Tau-5 and NF-M exhibited increased expression at 48 h while TuJ1 was only detectable after 96 h in p35 expressed Cos-7 cells. Additionally, the neural cell biomarkers exhibited well colocation with p35 proteins. Next-generation RNA sequence showed that p35 overexpression significantly upregulated the level of nerve growth factor (NGF). Gene set enrichment analysis showed significant enrichment of multiple neuron development pathways and increased NGF expression after p35 overexpression.</p><p><strong>Conclusion: </strong>p35-mediated Cdk5 activation promotes the transformation of immortalized Cos-7 cells into neuronal-like cells by upregulating NGF level.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220318"},"PeriodicalIF":2.1,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10612488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71414013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuzheng Lai, Eric Jou, Mohammad Mofatteh, Thanh N Nguyen, Jamie Sin Ying Ho, Francesco Diana, Adam A Dmytriw, Jianfeng He, Wenshan Yan, Yiying Chen, Zile Yan, Hao Sun, Leonard L Yeo, Yimin Chen, Sijie Zhou
{"title":"7-Day National Institutes of Health Stroke Scale as a surrogate marker predicting ischemic stroke patients' outcome following endovascular therapy.","authors":"Yuzheng Lai, Eric Jou, Mohammad Mofatteh, Thanh N Nguyen, Jamie Sin Ying Ho, Francesco Diana, Adam A Dmytriw, Jianfeng He, Wenshan Yan, Yiying Chen, Zile Yan, Hao Sun, Leonard L Yeo, Yimin Chen, Sijie Zhou","doi":"10.1515/tnsci-2022-0307","DOIUrl":"10.1515/tnsci-2022-0307","url":null,"abstract":"Abstract Background Early neurological deterioration after endovascular thrombectomy (EVT) is associated with poor prognosis. National Institutes of Health Stroke Scale (NIHSS) score measured at 24 h after EVT may be a better outcome predictor than other methods that focus on changes in NIHSS. Nevertheless, clinical fluctuations in ischemic stroke patients during the immediate phase after symptoms onset are well recognized. Therefore, a delayed NIHSS evaluation may improve prognostic accuracy. We evaluate the 7-day NIHSS in predicting long-term patient outcomes after EVT. Methods This was a multi-center retrospective cohort study of 300 consecutive ischemic stroke patients with large vessel occlusion who underwent EVT at three-stroke centers in China from August 2018 to March 2022. NIHSS was recorded on admission, pre-EVT, 24 h, and 7 days after EVT. Results A total of 236 eligible patients were subdivided into two groups: 7-day NIHSS ≤6 and NIHSS >6 post-EVT. 88.29% achieved a favorable outcome (modified Rankin Scale 0–2) in the NIHSS ≤6 group compared to 15.20% in the NIHSS >6 group at 90 days, and an improved favorable outcome in the former group was observed after adjusting for potential confounding factors (adjusted odds ratio 39.7, 95% confidence interval, 17.5–89.7, p < 0.001). Conclusion The 7-day NIHSS score may be a reliable predictor of 90-day stroke patient outcome after EVT.","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220307"},"PeriodicalIF":2.1,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49692545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}