Translational Research最新文献

筛选
英文 中文
Blockade of TREM2 ameliorates pulmonary inflammation and fibrosis by modulating sphingolipid metabolism 阻断 TREM2 可通过调节鞘脂代谢改善肺部炎症和纤维化。
IF 6.4 2区 医学
Translational Research Pub Date : 2024-10-28 DOI: 10.1016/j.trsl.2024.10.002
{"title":"Blockade of TREM2 ameliorates pulmonary inflammation and fibrosis by modulating sphingolipid metabolism","authors":"","doi":"10.1016/j.trsl.2024.10.002","DOIUrl":"10.1016/j.trsl.2024.10.002","url":null,"abstract":"<div><div>Pulmonary fibrosis is a chronic interstitial lung disease involving systemic inflammation and abnormal collagen deposition. Dysregulations in lipid metabolism, such as macrophage-dependent lipid catabolism, have been recognized as critical factors for the development of pulmonary fibrosis. However, little is known about the signaling pathways involved and the key regulators. Here we found that triggering receptor expressed on myeloid cells 2 (TREM2) plays a pivotal role in regulating the lipid handling capacities of pulmonary macrophages and triggering fibrosis. By integrating analysis of single-cell and bulk RNA sequencing data from patients and mice with pulmonary fibrosis, we revealed that pulmonary macrophages consist of heterogeneous populations with distinct pro-fibrotic properties, and found that both sphingolipid metabolism and the expression of chemotaxis-related genes are elevated in fibrotic lungs. TREM2, a sensor recognizing multiple lipid species, is specifically upregulated in a subset of monocyte-derived macrophages. Blockade of TREM2 by conventional/conditional knock-out or soluble TREM2 administration can attenuate bleomycin-induced pulmonary fibrosis. By utilizing scRNA Seq and lipidomics, we found that <em>Trem2</em> deficiency downregulates the synthesis of various sphingomyelins, and inhibits the expression of chemokines such as <em>Ccl2</em>. Together, our findings not only reveal the alterations in lipidomic profiles and the atlas of pulmonary macrophages during pulmonary fibrosis, but also suggest that targeting TREM2, the crucial regulator affecting both pulmonary sphingolipid metabolism and the chemokines secretion, can benefit pulmonary fibrosis patients in the future.</div></div>","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RXRα/MR signaling promotes diabetic kidney disease by facilitating renal tubular epithelial cells senescence and metabolic reprogramming RXRα/MR信号通过促进肾小管上皮细胞衰老和代谢重编程,促进糖尿病肾病的发生。
IF 6.4 2区 医学
Translational Research Pub Date : 2024-10-17 DOI: 10.1016/j.trsl.2024.10.001
{"title":"RXRα/MR signaling promotes diabetic kidney disease by facilitating renal tubular epithelial cells senescence and metabolic reprogramming","authors":"","doi":"10.1016/j.trsl.2024.10.001","DOIUrl":"10.1016/j.trsl.2024.10.001","url":null,"abstract":"<div><div>Cell senescence and metabolic reprogramming are significant features of diabetic kidney disease (DKD). However, the underlying mechanisms between cell senescence and metabolic reprogramming are poorly defined. Here, we report that retinoid X receptor α (RXRα), a key nuclear receptor transcription factor, regulates cell senescence and metabolic reprogramming in DKD. Through high-throughput sequencing, bioinformatic analysis and experimental validation, we confirmed the critical role of RXRα in promoting cell senescence and metabolic dysregulation in renal tubular epithelial cells (RTECs) induced by lipid overload. <em>In vivo, in situ</em> injection of AAV9-<em>shRxra</em> into the kidney reduced proteinuria, RTECs senescence and insulin resistance in DKD mice. <em>In vitro</em>, knockdown of RXRα markedly improved G2/M phase arrest and suppressed the expression of senescence-associated secretory phenotypes (SASPs). Protein-protein interaction (PPI) analysis and unbiased bioinformatics were employed to identify the direct interactions between RXRα and the mineralocorticoid receptor (MR), which were subsequently validated through coimmunoprecipitation. Gene network analysis revealed the collaborative regulatory role of RXRα and MR in RTECs senescence. In an accelerated aging mouse model, treatment with a MR antagonist has been shown to inhibite the RXRα/MR signaling, improve RTECs senescence, and reduce interstitial fibrosis and lipid deposition in the kidneys. These findings indicate that inhibition of RXRα/MR signaling could alleviate cell senescence during metabolic disorders. Thus, our study revealed that RXRα/MR signaling serves as a critical regulatory factor mediating the crosstalk between cell senescence and metabolic reprogramming, shedding light on a novel mechanism for targeting cell senescence and metabolic dysregulation in DKD.</div></div>","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dihydrolipoamide S-acetyltransferase activation alleviates diabetic kidney disease via AMPK-autophagy axis and mitochondrial protection 二氢脂酰胺 S-乙酰转移酶活化可通过 AMPK 自噬轴和线粒体保护缓解糖尿病肾病
IF 6.4 2区 医学
Translational Research Pub Date : 2024-10-09 DOI: 10.1016/j.trsl.2024.09.005
{"title":"Dihydrolipoamide S-acetyltransferase activation alleviates diabetic kidney disease via AMPK-autophagy axis and mitochondrial protection","authors":"","doi":"10.1016/j.trsl.2024.09.005","DOIUrl":"10.1016/j.trsl.2024.09.005","url":null,"abstract":"<div><div>Diabetic kidney disease (DKD), a severe complication of diabetes marked by deregulated glucose metabolism, remains enigmatic in its pathogenesis. Herein, we delved into the functional role of Dihydrolipoamide S-acetyltransferase (DLAT), a pivotal E2 component of the pyruvate dehydrogenase complex (PDC), in the context of DKD. Our findings revealed a downregulation of DLAT in the kidneys of diabetic patients, correlating inversely with kidney function. Parallel downregulation was observed in both high-fat diet/streptozotocin (HFD/STZ) and <em>db/db</em> mouse models, as well as in human proximal tubular epithelial cells (HK-2) cultured under hyperglycemic conditions. To further elucidate the role of endogenous DLAT in DKD, we employed genetic ablation of Dlat in mouse models. Dlat haploinsufficient mice exhibited exacerbated renal dysfunction, structural damage, fibrosis, and mitochondrial dysfunction under DKD conditions. Consistent with these findings, modulation of DLAT expression in HK-2 cells highlighted its influence on fibrosis, with overexpression attenuating Fibronectin and Collagen I levels, while downregulation exacerbated fibrosis. Mechanistically, we discovered that DLAT activates mitochondria autophagy through the Adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, thereby mitigating mitochondrial dysfunction associated with DKD progression. Inhibition of AMPK abrogated the protective effects of DLAT against mitochondrial dysfunction and DKD. Notably, we identified Hyperforin (HPF), a phytochemical, as a potential therapeutic agent. HPF activates DLAT and AMPK, subsequently ameliorating renal dysfunction, injuries, and fibrosis in both <em>in vivo</em> and <em>in vitro</em> models. In summary, our study underscores the pivotal role of DLAT and AMPK in kidney health and highlights the therapeutic potential of HPF in treating DKD.</div></div>","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum 胎盘早剥谱母胎界面的空间蛋白质组学和转录组学。
IF 6.4 2区 医学
Translational Research Pub Date : 2024-09-28 DOI: 10.1016/j.trsl.2024.09.004
{"title":"Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum","authors":"","doi":"10.1016/j.trsl.2024.09.004","DOIUrl":"10.1016/j.trsl.2024.09.004","url":null,"abstract":"<div><div>In severe Placenta Accreta Spectrum (PAS), trophoblasts gain deep access in the myometrium (placenta increta). This study investigated alterations at the fetal-maternal interface in PAS cases using a systems biology approach consisting of immunohistochemistry, spatial transcriptomics and proteomics. We identified spatial variation in the distribution of CD4<sup>+</sup>, CD3<sup>+</sup> and CD8<sup>+</sup> T-cells at the maternal-interface in placenta increta cases. Spatial transcriptomics identified transcription factors involved in promotion of trophoblast invasion such as AP-1 subunits ATF-3 and JUN, and NFKB were upregulated in regions with deep myometrial invasion. Pathway analysis of differentially expressed genes demonstrated that degradation of extracellular matrix (ECM) and class 1 MHC protein were increased in increta regions, suggesting local tissue injury and immune suppression. Spatial proteomics demonstrated that increta regions were characterised by excessive trophoblastic proliferation in an immunosuppressive environment. Expression of inhibitors of apoptosis such as BCL-2 and fibronectin were increased, while CTLA-4 was decreased and increased expression of PD-L1, PD-L2 and CD14 macrophages. Additionally, CD44, which is a ligand of fibronectin that promotes trophoblast invasion and cell adhesion was also increased in increta regions. We subsequently examined ligand receptor interactions enriched in increta regions, with interactions with ITGβ1, including with fibronectin and ADAMS, emerging as central in increta. These ITGβ1 ligand interactions are involved in activation of epithelial–mesenchymal transition and remodelling of ECM suggesting a more invasive trophoblast phenotype. In PAS, we suggest this is driven by fibronectin via AP-1 signalling, likely as a secondary response to myometrial scarring.</div></div>","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Siglec-5 as a novel receptor mediates endothelial cells oxLDL transcytosis to promote atherosclerosis Siglec-5 作为一种新型受体介导内皮细胞 oxLDL 转运,促进动脉粥样硬化。
IF 6.4 2区 医学
Translational Research Pub Date : 2024-09-26 DOI: 10.1016/j.trsl.2024.09.003
{"title":"Siglec-5 as a novel receptor mediates endothelial cells oxLDL transcytosis to promote atherosclerosis","authors":"","doi":"10.1016/j.trsl.2024.09.003","DOIUrl":"10.1016/j.trsl.2024.09.003","url":null,"abstract":"<div><h3>Background</h3><div>Excessive subendothelial retention of oxidized low-density lipoprotein (oxLDL) and subsequent oxLDL engulfment by macrophages leads to the formation of foam cells and the development of atherosclerosis. Our previous study showed that the plasma level of sialic acid-binding immunoglobulin-like lectin 5 (Siglec-5) was a novel biomarker for the prognosis of atherosclerosis in diabetic patients. However, the role and underlying mechanisms of Siglec-5 in atherosclerosis have not been elucidated.</div></div><div><h3>Methods</h3><div>The interaction between oxLDL and Siglec-5 was detected by fluorescence colocalization and coimmunoprecipitation. The effect of oxLDL on Siglec-5 expression was detected in endothelial cells and macrophages, and the effect of Siglec-5 on oxLDL transcytosis and uptake was investigated. Siglec-5 was overexpressed in mice using recombinant adeno-associated virus vector serotype 9 (rAAV9-Siglec-5) to evaluate the effect of Siglec-5 on oxLDL uptake and atherogenesis <em>in vivo</em>. In addition, the effects of Siglec-5 antibodies and soluble Siglec-5 proteins on oxLDL transcytosis and uptake and their role in atherogenesis were investigated <em>in vivo</em> and <em>in vitro</em>.</div></div><div><h3>Results</h3><div>We found that oxLDL interacted with Siglec-5 and that oxLDL stimulated the expression of Siglec-5. Siglec-5 promotes the transcytosis and uptake of oxLDL, while both anti-Siglec-5 antibodies and soluble Siglec-5 protein attenuated oxLDL transcytosis and uptake. Interestingly, overexpression of Siglec-5 by recombinant adeno-associated viral vector serotype 9 (rAAV9-Siglec-5) promoted the retention of oxLDL in the aorta of C57BL/6 mice. Moreover, overexpression of Siglec-5 significantly accelerated the formation of atherosclerotic lesions in Apoe<sup>−/−</sup> mice. Moreover, both anti-Siglec-5 antibodies and soluble Siglec-5 protein significantly alleviated the retention of oxLDL in the aorta of rAAV9-Siglec-5-transfected C57BL/6 mice and the formation of atherosclerotic plaques in rAAV9-Siglec-5-transfected Apoe<sup>−/−</sup> mice.</div></div><div><h3>Conclusion</h3><div>Our results suggested that Siglec-5 was a novel receptor that mediated oxLDL transcytosis and promoted the formation of foam cells. Interventions that inhibit the interaction between oxLDL and Siglec-5, including anti-Siglec-5 antibody or soluble Siglec-5 protein treatment, may provide novel therapeutic strategies in treating atherosclerosis.</div></div>","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142335634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnostic, prognostic, and predictive biomarkers in gastric cancer: from conventional to novel biomarkers 胃癌的诊断、预后和预测生物标志物:从传统生物标志物到新型生物标志物。
IF 6.4 2区 医学
Translational Research Pub Date : 2024-09-10 DOI: 10.1016/j.trsl.2024.09.001
{"title":"Diagnostic, prognostic, and predictive biomarkers in gastric cancer: from conventional to novel biomarkers","authors":"","doi":"10.1016/j.trsl.2024.09.001","DOIUrl":"10.1016/j.trsl.2024.09.001","url":null,"abstract":"<div><div>Gastric cancer is a major health concern worldwide. The survival rate of Gastric cancer greatly depends on the stage at which it is diagnosed. Early diagnosis is critical for improving survival outcomes. To improve the chances of early diagnosis, regular screening tests, such as an upper endoscopy or barium swallow, are recommended for individuals at a higher risk due to factors like family history or a previous diagnosis of gastric conditions. Biomarkers can be detected and measured using non-invasive methods such as blood tests, urine tests, breath analysis, or imaging techniques. These non-invasive approaches offer many advantages, including convenience, safety, and cost-effectiveness, making them valuable tools for disease diagnosis, monitoring, and research. Biomarker-based tests have emerged as a useful tool for identifying gastric cancer early, monitoring treatment response, assessing the recurrence risk, and personalizing treatment plans. In this current review, we have explored both classical and novel biomarkers for gastric cancer. We have centralized their potential clinical application and discussed the challenges in Gastric cancer research.</div></div>","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142305344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Information for Readers 读者信息
IF 6.4 2区 医学
Translational Research Pub Date : 2024-09-09 DOI: 10.1016/S1931-5244(24)00165-8
{"title":"Information for Readers","authors":"","doi":"10.1016/S1931-5244(24)00165-8","DOIUrl":"10.1016/S1931-5244(24)00165-8","url":null,"abstract":"","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Guidelines 作者指南
IF 6.4 2区 医学
Translational Research Pub Date : 2024-09-09 DOI: 10.1016/S1931-5244(24)00164-6
{"title":"Author Guidelines","authors":"","doi":"10.1016/S1931-5244(24)00164-6","DOIUrl":"10.1016/S1931-5244(24)00164-6","url":null,"abstract":"","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Advisory Board 编辑顾问委员会
IF 6.4 2区 医学
Translational Research Pub Date : 2024-09-09 DOI: 10.1016/S1931-5244(24)00163-4
{"title":"Editorial Advisory Board","authors":"","doi":"10.1016/S1931-5244(24)00163-4","DOIUrl":"10.1016/S1931-5244(24)00163-4","url":null,"abstract":"","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1931524424001634/pdfft?md5=a76ad259a7dd427d26d8447389f22bc1&pid=1-s2.0-S1931524424001634-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
J147 treatment protects against traumatic brain injury by inhibiting neuronal endoplasmic reticulum stress potentially via the AMPK/SREBP-1 pathway J147 可通过 AMPK/SREBP-1 途径抑制神经元内质网应激,从而保护大脑免受创伤性脑损伤。
IF 6.4 2区 医学
Translational Research Pub Date : 2024-09-07 DOI: 10.1016/j.trsl.2024.08.007
{"title":"J147 treatment protects against traumatic brain injury by inhibiting neuronal endoplasmic reticulum stress potentially via the AMPK/SREBP-1 pathway","authors":"","doi":"10.1016/j.trsl.2024.08.007","DOIUrl":"10.1016/j.trsl.2024.08.007","url":null,"abstract":"<div><p>Endoplasmic reticulum (ER) stress is recognized as a crucial contributor to the progression of traumatic brain injury (TBI) and represents a potential target for therapeutic intervention. This study aimed to assess the potential of J147, a novel neurotrophic compound, in alleviating ER stress by modulating related signaling pathways, thereby promoting functional recovery in TBI. To this end, adult mice underwent controlled cortical impact (CCI) injury to induce TBI, followed by oral administration of J147 one-hour post-injury, with daily dosing for 3 to 7 days. Multiple behavioral assessments were conducted over 35 days, revealing a significant, dose-dependent improvement in neurofunctional recovery with J147 treatment. The neuropathological analysis demonstrated reduced acute neurodegeneration (observed at three days through FJC staining), enhanced long-term neuron survival (H&amp;E and Nissl staining), and improved neuroplasticity (Golgi staining) at 35 days post-TBI. At the molecular level, TBIinduced AMP-activated protein kinase (AMPK) dephosphorylation, sterol regulatory element binding protein-1 (SREBP-1) activation, and upregulation of ER stress marker proteins, including phosphorylated eukaryotic initiation factor-2α (p-eIF2a), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in perilesional cortex neurons at three days post-injury. Notably, the J147 treatment significantly attenuated AMPK dephosphorylation, SERBP-1 activation, and expression of the ER stress markers. In summary, this study reveals the therapeutic promise of J147 in mitigating secondary brain damage associated with TBI and improving long-term functional recovery by modulating ER stress pathways.</p></div>","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142157085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信