Petra Košútová , Nikollet Nemcová , Maroš Kolomazník , Andrea Čalkovská , Pavol Mikolka
{"title":"一种新的严重急性呼吸窘迫综合征兔模型:吸酸和有害机械通气的协同作用。","authors":"Petra Košútová , Nikollet Nemcová , Maroš Kolomazník , Andrea Čalkovská , Pavol Mikolka","doi":"10.1016/j.trsl.2025.05.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Acute respiratory distress syndrome (ARDS) is characterised by severe inflammation and pulmonary edema, often leading to respiratory failure. This study aims to develop a stable and relevant rabbit model of severe ARDS using hydrochloric acid (HCl) aspiration and ventilator-induced lung injury (VILI).</div></div><div><h3>Methods</h3><div>Adult New Zealand rabbits were divided into four groups: Saline (<em>n</em> = 9), 1-hit 3.0 (HCl 3 ml/kg, <em>n</em> = 7), 1-hit 6.0 (HCl 6 ml/kg, <em>n</em> = 7), and 2-hit (HCl 3 ml/kg and ventilation with V<sub>T</sub> 20 ml/kg, zero PEEP, RR 20-30 bpm, and FiO<sub>2</sub> 1.0 to mimic VILI, <em>n</em> = 14). PaO<sub>2</sub>/FiO<sub>2</sub> ratio, oxygenation index, oxygen saturation, PaCO<sub>2</sub>, ventilation efficiency index and alveolar-arterial gradient were evaluated every hour for 4 h after induction of lung injury. The <em>post-mortem</em> analysis included total and differential cell counts in bronchoalveolar lavage fluid (BALF), evaluation of lung edema formation, biochemical and histological examination of lung tissue<em>.</em></div></div><div><h3>Results</h3><div>In the 2-hit group, we observed a significant deterioration of all lung function parameters (P/F ratio, oxygenation index, ventilation efficiency index, and alveolar-arterial gradient) compared to the saline group. Similarly, a deterioration was observed in the 1-hit 6.0 group. When analysing the inflammatory profile, we observed significantly increased levels of chemokines and cytokines (TNFα, IL-1β, IL-6, IL-8, ET-1, MCP, H1F, MIP) and oxidative stress parameters (3NT, MDA, AOPP, catalase and GSH/GSSG) in BALF in the 2-hit group compared to the saline group. Intratracheal administration of HCl alone did not have a significant impact on inflammation as the combination of two insults. An increased wet-to-dry lung weight ratio (W/D), indicative of pulmonary edema, was observed in both the 2-hit and 1-hit 6.0 groups compared to the saline group. An increased level of protein content in BALF and total lung injury score were observed in the 2-hit group compared to the saline group, 1-hit 3.0 and 1-hit 6.0.</div></div><div><h3>Conclusion</h3><div>The combination of hydrochloric acid aspiration and ventilator-induced lung injury reliably reproduces key features of severe ARDS, offering a robust and clinically relevant model for investigating its complex pathophysiology and evaluating novel therapeutic interventions.</div></div>","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":"281 ","pages":"Pages 43-54"},"PeriodicalIF":6.4000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel rabbit model of severe ARDS: Synergistic effects of acid aspiration and harmful mechanical ventilation\",\"authors\":\"Petra Košútová , Nikollet Nemcová , Maroš Kolomazník , Andrea Čalkovská , Pavol Mikolka\",\"doi\":\"10.1016/j.trsl.2025.05.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Acute respiratory distress syndrome (ARDS) is characterised by severe inflammation and pulmonary edema, often leading to respiratory failure. This study aims to develop a stable and relevant rabbit model of severe ARDS using hydrochloric acid (HCl) aspiration and ventilator-induced lung injury (VILI).</div></div><div><h3>Methods</h3><div>Adult New Zealand rabbits were divided into four groups: Saline (<em>n</em> = 9), 1-hit 3.0 (HCl 3 ml/kg, <em>n</em> = 7), 1-hit 6.0 (HCl 6 ml/kg, <em>n</em> = 7), and 2-hit (HCl 3 ml/kg and ventilation with V<sub>T</sub> 20 ml/kg, zero PEEP, RR 20-30 bpm, and FiO<sub>2</sub> 1.0 to mimic VILI, <em>n</em> = 14). PaO<sub>2</sub>/FiO<sub>2</sub> ratio, oxygenation index, oxygen saturation, PaCO<sub>2</sub>, ventilation efficiency index and alveolar-arterial gradient were evaluated every hour for 4 h after induction of lung injury. The <em>post-mortem</em> analysis included total and differential cell counts in bronchoalveolar lavage fluid (BALF), evaluation of lung edema formation, biochemical and histological examination of lung tissue<em>.</em></div></div><div><h3>Results</h3><div>In the 2-hit group, we observed a significant deterioration of all lung function parameters (P/F ratio, oxygenation index, ventilation efficiency index, and alveolar-arterial gradient) compared to the saline group. Similarly, a deterioration was observed in the 1-hit 6.0 group. When analysing the inflammatory profile, we observed significantly increased levels of chemokines and cytokines (TNFα, IL-1β, IL-6, IL-8, ET-1, MCP, H1F, MIP) and oxidative stress parameters (3NT, MDA, AOPP, catalase and GSH/GSSG) in BALF in the 2-hit group compared to the saline group. Intratracheal administration of HCl alone did not have a significant impact on inflammation as the combination of two insults. An increased wet-to-dry lung weight ratio (W/D), indicative of pulmonary edema, was observed in both the 2-hit and 1-hit 6.0 groups compared to the saline group. An increased level of protein content in BALF and total lung injury score were observed in the 2-hit group compared to the saline group, 1-hit 3.0 and 1-hit 6.0.</div></div><div><h3>Conclusion</h3><div>The combination of hydrochloric acid aspiration and ventilator-induced lung injury reliably reproduces key features of severe ARDS, offering a robust and clinically relevant model for investigating its complex pathophysiology and evaluating novel therapeutic interventions.</div></div>\",\"PeriodicalId\":23226,\"journal\":{\"name\":\"Translational Research\",\"volume\":\"281 \",\"pages\":\"Pages 43-54\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1931524425000659\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1931524425000659","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
A novel rabbit model of severe ARDS: Synergistic effects of acid aspiration and harmful mechanical ventilation
Background
Acute respiratory distress syndrome (ARDS) is characterised by severe inflammation and pulmonary edema, often leading to respiratory failure. This study aims to develop a stable and relevant rabbit model of severe ARDS using hydrochloric acid (HCl) aspiration and ventilator-induced lung injury (VILI).
Methods
Adult New Zealand rabbits were divided into four groups: Saline (n = 9), 1-hit 3.0 (HCl 3 ml/kg, n = 7), 1-hit 6.0 (HCl 6 ml/kg, n = 7), and 2-hit (HCl 3 ml/kg and ventilation with VT 20 ml/kg, zero PEEP, RR 20-30 bpm, and FiO2 1.0 to mimic VILI, n = 14). PaO2/FiO2 ratio, oxygenation index, oxygen saturation, PaCO2, ventilation efficiency index and alveolar-arterial gradient were evaluated every hour for 4 h after induction of lung injury. The post-mortem analysis included total and differential cell counts in bronchoalveolar lavage fluid (BALF), evaluation of lung edema formation, biochemical and histological examination of lung tissue.
Results
In the 2-hit group, we observed a significant deterioration of all lung function parameters (P/F ratio, oxygenation index, ventilation efficiency index, and alveolar-arterial gradient) compared to the saline group. Similarly, a deterioration was observed in the 1-hit 6.0 group. When analysing the inflammatory profile, we observed significantly increased levels of chemokines and cytokines (TNFα, IL-1β, IL-6, IL-8, ET-1, MCP, H1F, MIP) and oxidative stress parameters (3NT, MDA, AOPP, catalase and GSH/GSSG) in BALF in the 2-hit group compared to the saline group. Intratracheal administration of HCl alone did not have a significant impact on inflammation as the combination of two insults. An increased wet-to-dry lung weight ratio (W/D), indicative of pulmonary edema, was observed in both the 2-hit and 1-hit 6.0 groups compared to the saline group. An increased level of protein content in BALF and total lung injury score were observed in the 2-hit group compared to the saline group, 1-hit 3.0 and 1-hit 6.0.
Conclusion
The combination of hydrochloric acid aspiration and ventilator-induced lung injury reliably reproduces key features of severe ARDS, offering a robust and clinically relevant model for investigating its complex pathophysiology and evaluating novel therapeutic interventions.
期刊介绍:
Translational Research (formerly The Journal of Laboratory and Clinical Medicine) delivers original investigations in the broad fields of laboratory, clinical, and public health research. Published monthly since 1915, it keeps readers up-to-date on significant biomedical research from all subspecialties of medicine.