Traffic最新文献

筛选
英文 中文
Diamond controls epithelial polarity through the dynactin-dynein complex. 金刚石通过动力蛋白-动力蛋白复合物控制上皮极性。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-12-01 Epub Date: 2023-08-29 DOI: 10.1111/tra.12917
Hang Zhao, Lin Shi, Zhengran Li, Ruiyan Kong, Lemei Jia, Shan Lu, Jian-Hua Wang, Meng-Qiu Dong, Xuan Guo, Zhouhua Li
{"title":"Diamond controls epithelial polarity through the dynactin-dynein complex.","authors":"Hang Zhao, Lin Shi, Zhengran Li, Ruiyan Kong, Lemei Jia, Shan Lu, Jian-Hua Wang, Meng-Qiu Dong, Xuan Guo, Zhouhua Li","doi":"10.1111/tra.12917","DOIUrl":"10.1111/tra.12917","url":null,"abstract":"<p><p>Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":" ","pages":"552-563"},"PeriodicalIF":4.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10167112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper-independent lysosomal localisation of the Wilson disease protein ATP7B. Wilson病蛋白ATP7B的铜非依赖性溶酶体定位。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-12-01 Epub Date: 2023-10-17 DOI: 10.1111/tra.12919
Saptarshi Maji, Marinella Pirozzi, Ruturaj, Raviranjan Pandey, Tamal Ghosh, Santanu Das, Arnab Gupta
{"title":"Copper-independent lysosomal localisation of the Wilson disease protein ATP7B.","authors":"Saptarshi Maji, Marinella Pirozzi, Ruturaj, Raviranjan Pandey, Tamal Ghosh, Santanu Das, Arnab Gupta","doi":"10.1111/tra.12919","DOIUrl":"10.1111/tra.12919","url":null,"abstract":"<p><p>In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":" ","pages":"587-609"},"PeriodicalIF":4.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41238743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-chaperone BAG3 enters autophagic pathway via its interaction with microtubule associated protein 1 light chain 3 beta. 协同伴侣蛋白BAG3通过与微管相关蛋白1轻链3 β的相互作用进入自噬途径。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-12-01 Epub Date: 2023-09-01 DOI: 10.1111/tra.12916
Hagen Körschgen, Marius Baeken, Daniel Schmitt, Heike Nagel, Christian Behl
{"title":"Co-chaperone BAG3 enters autophagic pathway via its interaction with microtubule associated protein 1 light chain 3 beta.","authors":"Hagen Körschgen, Marius Baeken, Daniel Schmitt, Heike Nagel, Christian Behl","doi":"10.1111/tra.12916","DOIUrl":"10.1111/tra.12916","url":null,"abstract":"<p><p>The co-chaperone BAG3 is a hub for a variety of cellular pathways via its multiple domains and its interaction with chaperones of the HSP70 family or small HSPs. During aging and under cellular stress conditions in particular, BAG3, together with molecular chaperones, ensures the sequestration of aggregated or aggregation-prone ubiquitinated proteins to the autophagic-lysosomal system via ubiquitin receptors. Accumulating evidence for BAG3-mediated selective autophagy independent of cargo ubiquitination led to analyses predicting a direct interaction of BAG3 with LC3 proteins. Phylogenetically, BAG3 comprises several highly conserved potential LIRs, LC3-interacting regions, which might allow for the direct targeting of BAG3 including its cargo to autophagosomes and drive their autophagic degradation. Based on pull-down experiments, peptide arrays and proximity ligation assays, our results provide evidence of an interaction of BAG3 with LC3B. In addition, we could demonstrate that disabling all predicted LIRs abolished the inducibility of a colocalization of BAG3 with LC3B-positive structures and resulted in a substantial decrease of BAG3 levels within purified native autophagic vesicles compared with wild-type BAG3. These results suggest an autophagic targeting of BAG3 via interaction with LC3B. Therefore, we conclude that, in addition to being a key co-chaperone to HSP70, BAG3 may also act as a cargo receptor for client proteins, which would significantly extend the role of BAG3 in selective macroautophagy and protein quality control.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":" ","pages":"564-575"},"PeriodicalIF":4.5,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10119819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interferon induction by STING requires its translocation to the late endosomes. STING诱导干扰素需要将其转移到晚期内体。
IF 3.6 3区 生物学
Traffic Pub Date : 2023-12-01 Epub Date: 2023-09-02 DOI: 10.1111/tra.12918
Chenyao Wang, Nikhil Sharma, Patricia M Kessler, Ganes C Sen
{"title":"Interferon induction by STING requires its translocation to the late endosomes.","authors":"Chenyao Wang, Nikhil Sharma, Patricia M Kessler, Ganes C Sen","doi":"10.1111/tra.12918","DOIUrl":"10.1111/tra.12918","url":null,"abstract":"<p><p>To combat microbial infections, mammalian cells use a variety of innate immune response pathways to induce synthesis of anti-microbial proteins. The cGAS/STING pathway recognizes cytoplasmic viral or cellular DNA to elicit signals that lead to type I interferon and other cytokine synthesis. cGAMP, synthesized by DNA-activated cGAS, activates the ER-associated protein, STING, which oligomerizes and translocates to other intracellular membrane compartments to trigger different branches of signaling. We have reported that, in the ER, EGFR-mediated phosphorylation of Tyr245 of STING is required for its transit to the late endosomes, where it recruits and activates the transcription factor IRF3 required for IFN induction. In the current study, we inquired whether STING Tyr245 phosphorylation per se or STING's location in the late endosomes was critical for its ability to recruit IRF3 and induce IFN. Using pharmacological inhibitors or genetic ablation of proteins that are essential for specific steps of STING trafficking, we demonstrated that the presence of STING in the late endosomal membranes, even without Tyr245 phosphorylation, was sufficient for IRF3-mediated IFN induction.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":" ","pages":"576-586"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10201531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical modeling of mRNP transport in dendrites: A comparative analysis of β-actin and Arc mRNP dynamics. 树突中mRNP转运的统计模型:β-肌动蛋白和Arc mRNP动力学的比较分析。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-11-01 Epub Date: 2023-08-06 DOI: 10.1111/tra.12913
Hyerim Ahn, Xavier Durang, Jae Youn Shim, Gaeun Park, Jae-Hyung Jeon, Hye Yoon Park
{"title":"Statistical modeling of mRNP transport in dendrites: A comparative analysis of β-actin and Arc mRNP dynamics.","authors":"Hyerim Ahn, Xavier Durang, Jae Youn Shim, Gaeun Park, Jae-Hyung Jeon, Hye Yoon Park","doi":"10.1111/tra.12913","DOIUrl":"10.1111/tra.12913","url":null,"abstract":"<p><p>Localization of messenger RNA (mRNA) in dendrites is crucial for regulating gene expression during long-term memory formation. mRNA binds to RNA-binding proteins (RBPs) to form messenger ribonucleoprotein (mRNP) complexes that are transported by motor proteins along microtubules to their target synapses. However, the dynamics by which mRNPs find their target locations in the dendrite have not been well understood. Here, we investigated the motion of endogenous β-actin and Arc mRNPs in dissociated mouse hippocampal neurons using the MS2 and PP7 stem-loop systems, respectively. By evaluating the statistical properties of mRNP movement, we found that the aging Lévy walk model effectively describes both β-actin and Arc mRNP transport in proximal dendrites. A critical difference between β-actin and Arc mRNPs was the aging time, the time lag between transport initiation and measurement initiation. The longer mean aging time of β-actin mRNP (~100 s) compared with that of Arc mRNP (~30 s) reflects the longer half-life of constitutively expressed β-actin mRNP. Furthermore, our model also permitted us to estimate the ratio of newly generated and pre-existing β-actin mRNPs in the dendrites. This study offers a robust theoretical framework for mRNP transport, which provides insight into how mRNPs locate their targets in neurons.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":" ","pages":"522-532"},"PeriodicalIF":4.5,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10319298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anterograde trafficking of Toll-like receptors requires the cargo sorting adaptors TMED-2 and 7. Toll样受体的反向贩运需要货物分拣适配器TMED-2和7。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-11-01 Epub Date: 2023-07-26 DOI: 10.1111/tra.12912
Julia E J Holm, Sandro G Soares, Martyn F Symmons, Afiqah Saleh Huddin, Martin C Moncrieffe, Nicholas J Gay
{"title":"Anterograde trafficking of Toll-like receptors requires the cargo sorting adaptors TMED-2 and 7.","authors":"Julia E J Holm, Sandro G Soares, Martyn F Symmons, Afiqah Saleh Huddin, Martin C Moncrieffe, Nicholas J Gay","doi":"10.1111/tra.12912","DOIUrl":"10.1111/tra.12912","url":null,"abstract":"<p><p>Toll-Like Receptors (TLRs) play a pivotal role in immunity by recognising conserved structural features of pathogens and initiating the innate immune response. TLR signalling is subject to complex regulation that remains poorly understood. Here we show that two small type I transmembrane receptors, TMED2 and 7, that function as cargo sorting adaptors in the early secretory pathway are required for transport of TLRs from the ER to Golgi. Protein interaction studies reveal that TMED7 interacts with TLR2, TLR4 and TLR5 but not with TLR3 and TLR9. On the other hand, TMED2 interacts with TLR2, TLR4 and TLR3. Dominant negative forms of TMED7 suppress the export of cell surface TLRs from the ER to the Golgi. By contrast TMED2 is required for the ER-export of both plasma membrane and endosomal TLRs. Together, these findings suggest that association of TMED2 and TMED7 with TLRs facilitates anterograde transport from the ER to the Golgi.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":" ","pages":"508-521"},"PeriodicalIF":4.5,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9870592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of hydrophobicity and codon usage bias determines sorting of model K+ channel protein to either mitochondria or endoplasmic reticulum. 疏水性和密码子使用偏差的组合决定了模型K+通道蛋白向线粒体或内质网的分选。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-11-01 Epub Date: 2023-08-14 DOI: 10.1111/tra.12915
Anja J Engel, Steffen Paech, Markus Langhans, James L van Etten, Anna Moroni, Gerhard Thiel, Oliver Rauh
{"title":"Combination of hydrophobicity and codon usage bias determines sorting of model K<sup>+</sup> channel protein to either mitochondria or endoplasmic reticulum.","authors":"Anja J Engel,&nbsp;Steffen Paech,&nbsp;Markus Langhans,&nbsp;James L van Etten,&nbsp;Anna Moroni,&nbsp;Gerhard Thiel,&nbsp;Oliver Rauh","doi":"10.1111/tra.12915","DOIUrl":"10.1111/tra.12915","url":null,"abstract":"<p><p>When the K<sup>+</sup> channel-like protein Kesv from Ectocarpus siliculosus virus 1 is heterologously expressed in mammalian cells, it is sorted to the mitochondria. This targeting can be redirected to the endoplasmic reticulum (ER) by altering the codon usage in distinct regions of the gene or by inserting a triplet of hydrophobic amino acids (AAs) into the protein's C-terminal transmembrane domain (ct-TMD). Systematic variations in the flavor of the inserted AAs and/or its codon usage show that a positive charge in the inserted AA triplet alone serves as strong signal for mitochondria sorting. In cases of neutral AA triplets, mitochondria sorting are favored by a combination of hydrophilic AAs and rarely used codons; sorting to the ER exhibits the inverse dependency. This propensity for ER sorting is particularly high when a common codon follows a rarer one in the AA triplet; mitochondria sorting in contrast is supported by codon uniformity. Since parameters like positive charge, hydrophobic AAs, and common codons are known to facilitate elongation of nascent proteins in the ribosome the data suggest a mechanism in which local changes in elongation velocity and co-translational folding in the ct-TMD influence intracellular protein sorting.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":" ","pages":"533-545"},"PeriodicalIF":4.5,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10362730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic tandem proximity-based proteomics-Protein trafficking at the proteome-scale. 基于动态串联邻近度的蛋白质组学蛋白质组学规模的蛋白质运输。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-11-01 Epub Date: 2023-08-15 DOI: 10.1111/tra.12914
Eric Chevet, Maria Antonietta De Matteis, Eeva-Liisa Eskelinen, Hesso Farhan
{"title":"Dynamic tandem proximity-based proteomics-Protein trafficking at the proteome-scale.","authors":"Eric Chevet,&nbsp;Maria Antonietta De Matteis,&nbsp;Eeva-Liisa Eskelinen,&nbsp;Hesso Farhan","doi":"10.1111/tra.12914","DOIUrl":"10.1111/tra.12914","url":null,"abstract":"<p><p>TransitID is a new methodology based on proximity labeling allowing for the study of protein trafficking a the proteome scale.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":" ","pages":"546-548"},"PeriodicalIF":4.5,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10353677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of extracellular vesicles in iron homeostasis and ferroptosis: Focus on musculoskeletal diseases. 细胞外囊泡在铁稳态和铁下垂中的作用:聚焦于肌肉骨骼疾病。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-09-01 DOI: 10.1111/tra.12905
Zhiwei Liao, Bide Tong, Zixuan Ou, Junyu Wei, Ming Lei, Cao Yang
{"title":"The role of extracellular vesicles in iron homeostasis and ferroptosis: Focus on musculoskeletal diseases.","authors":"Zhiwei Liao,&nbsp;Bide Tong,&nbsp;Zixuan Ou,&nbsp;Junyu Wei,&nbsp;Ming Lei,&nbsp;Cao Yang","doi":"10.1111/tra.12905","DOIUrl":"https://doi.org/10.1111/tra.12905","url":null,"abstract":"Iron homeostasis is crucial for maintaining proper cellular function, and its disruption is considered one of the pathogenic mechanisms underlying musculoskeletal diseases. Under conditions of oxidative stress, the accumulation of cellular iron overload and lipid peroxidation can lead to ferroptosis. Extracellular vesicles (EVs), serving as mediators in the cell‐to‐cell communication, play an important role in regulating the outcome of cell ferroptosis. Growing evidence has proven that EV biogenesis and secretion are tightly associated with cellular iron export. Furthermore, different sources of EVs deliver diverse cargoes to bring about phenotypic changes in the recipient cells, either activating or inhibiting ferroptosis. Thus, delivering therapies targeting ferroptosis through EVs may hold significant potential for treating musculoskeletal diseases. This review aims to summarize current knowledge on the role of EVs in iron homeostasis and ferroptosis, as well as their therapeutic applications in musculoskeletal diseases, and thereby provide valuable insights for both research and clinical practice.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 9","pages":"384-396"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9944277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crucial roles of Rab22a in endosomal cargo recycling. Rab22a在内体货物循环中的关键作用。
IF 4.5 3区 生物学
Traffic Pub Date : 2023-09-01 DOI: 10.1111/tra.12907
Lingjie Kong, Shenghao Huang, Yuxuan Bao, Yingtong Chen, Chunyan Hua, Sheng Gao
{"title":"Crucial roles of Rab22a in endosomal cargo recycling.","authors":"Lingjie Kong,&nbsp;Shenghao Huang,&nbsp;Yuxuan Bao,&nbsp;Yingtong Chen,&nbsp;Chunyan Hua,&nbsp;Sheng Gao","doi":"10.1111/tra.12907","DOIUrl":"https://doi.org/10.1111/tra.12907","url":null,"abstract":"<p><p>Endosomal cargo recycling lies at the heart of subcellular trafficking processes under the management of several Ras-related GTP-binding proteins (Rabs) which are coordinated by their upstream regulators and require their downstream effectors to display their functions. In this regard, several Rabs have been well-reviewed except Rab22a. Rab22a is a crucial regulator of vesicle trafficking, early endosome and recycling endosome formation. Notably, recent studies demonstrated the immunological roles of Rab22a, which are closely associated with cancers, infection and autoimmune disorders. This review provides an overview of the regulators and effectors of Rab22a. Also, we highlight the current knowledge of the role of Rab22a in endosomal cargo recycling, including the biogenesis of recycling tubules with the help of a complex with Rab22a at its core, and how different internalized cargo chooses different recycling routes thanks to the cooperation of Rab22a, its effectors and its regulators. Of note, contradictions and speculation related to endosomal cargo recycling that Rab22a brings impacts on are also discussed. Finally, this review endeavors to briefly introduce the various events impacted by Rab22a, particularly focusing on the commandeered Rab22a-associated endosomal maturation and endosomal cargo recycling, in addition to the extensively investigated oncogenic role of Rab22a.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 9","pages":"397-412"},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9944280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信