TrafficPub Date : 2023-08-01Epub Date: 2023-06-21DOI: 10.1111/tra.12903
Zinia D'Souza, Irina Pokrovskaya, Vladimir V Lupashin
{"title":"Syntaxin-5's flexibility in SNARE pairing supports Golgi functions.","authors":"Zinia D'Souza, Irina Pokrovskaya, Vladimir V Lupashin","doi":"10.1111/tra.12903","DOIUrl":"10.1111/tra.12903","url":null,"abstract":"<p><p>Deficiency in the conserved oligomeric Golgi (COG) complex that orchestrates SNARE-mediated tethering/fusion of vesicles that recycle the Golgi's glycosylation machinery results in severe glycosylation defects. Although two major Golgi v-SNAREs, GS28/GOSR1, and GS15/BET1L, are depleted in COG-deficient cells, the complete knockout of GS28 and GS15 only modestly affects Golgi glycosylation, indicating the existence of an adaptation mechanism in Golgi SNARE. Indeed, quantitative mass-spectrometry analysis of STX5-interacting proteins revealed two novel Golgi SNARE complexes-STX5/SNAP29/VAMP7 and STX5/VTI1B/STX8/YKT6. These complexes are present in wild-type cells, but their usage is significantly increased in both GS28- and COG-deficient cells. Upon GS28 deletion, SNAP29 increased its Golgi residency in a STX5-dependent manner. While STX5 depletion and Retro2-induced diversion from the Golgi severely affect protein glycosylation, GS28/SNAP29 and GS28/VTI1B double knockouts alter glycosylation similarly to GS28 KO, indicating that a single STX5-based SNARE complex is sufficient to support Golgi glycosylation. Importantly, co-depletion of three Golgi SNARE complexes in GS28/SNAP29/VTI1B TKO cells resulted in severe glycosylation defects and a reduced capacity for glycosylation enzyme retention at the Golgi. This study demonstrates the remarkable plasticity in SXT5-mediated membrane trafficking, uncovering a novel adaptive response to the failure of canonical intra-Golgi vesicle tethering/fusion machinery.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 8","pages":"355-379"},"PeriodicalIF":3.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9769259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pseudophosphatase STYXL1 depletion enhances glucocerebrosidase trafficking to lysosomes via ER stress.","authors":"Saloni Patel, Anshul Milap Bhatt, Priyanka Bhansali, Subba Rao Gangi Setty","doi":"10.1111/tra.12886","DOIUrl":"10.1111/tra.12886","url":null,"abstract":"<p><p>Pseudophosphatases are catalytically inactive but share sequence and structural similarities with classical phosphatases. STYXL1 is a pseudophosphatase that belongs to the family of dual-specificity phosphatases and is known to regulate stress granule formation, neurite formation and apoptosis in different cell types. However, the role of STYXL1 in regulating cellular trafficking or the lysosome function has not been elucidated. Here, we show that the knockdown of STYXL1 enhances the trafficking of β-glucocerebrosidase (β-GC) and its lysosomal activity in HeLa cells. Importantly, the STYXL1-depleted cells display enhanced distribution of endoplasmic reticulum (ER), late endosome and lysosome compartments. Further, knockdown of STYXL1 causes the nuclear translocation of unfolded protein response (UPR) and lysosomal biogenesis transcription factors. However, the upregulated β-GC activity in the lysosomes is independent of TFEB/TFE3 nuclear localization in STYXL1 knockdown cells. The treatment of STYXL1 knockdown cells with 4-PBA (ER stress attenuator) significantly reduces the β-GC activity equivalent to control cells but not additive with thapsigargin, an ER stress activator. Additionally, STYXL1-depleted cells show the enhanced contact of lysosomes with ER, possibly via increased UPR. The depletion of STYXL1 in human primary fibroblasts derived from Gaucher patients showed moderately enhanced lysosomal enzyme activity. Overall, these studies illustrated the unique role of pseudophosphatase STYXL1 in modulating the lysosome function both in normal and lysosome-storage disorder cell types. Thus, designing small molecules against STYXL1 possibly can restore the lysosome activity by enhancing ER stress in Gaucher disease.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 7","pages":"254-269"},"PeriodicalIF":4.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9622093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TrafficPub Date : 2023-07-01Epub Date: 2023-05-02DOI: 10.1111/tra.12888
Neuza Domingues, André R A Marques, Rita Diogo Almeida Calado, Inês S Ferreira, Cristiano Ramos, José Ramalho, Maria I L Soares, Telmo Pereira, Luís Oliveira, José R Vicente, Louise H Wong, Inês C M Simões, Teresa M V D Pinho E Melo, Andrew Peden, Cláudia Guimas Almeida, Clare E Futter, Rosa Puertollano, Winchil L C Vaz, Otília V Vieira
{"title":"Oxidized cholesteryl ester induces exocytosis of dysfunctional lysosomes in lipidotic macrophages.","authors":"Neuza Domingues, André R A Marques, Rita Diogo Almeida Calado, Inês S Ferreira, Cristiano Ramos, José Ramalho, Maria I L Soares, Telmo Pereira, Luís Oliveira, José R Vicente, Louise H Wong, Inês C M Simões, Teresa M V D Pinho E Melo, Andrew Peden, Cláudia Guimas Almeida, Clare E Futter, Rosa Puertollano, Winchil L C Vaz, Otília V Vieira","doi":"10.1111/tra.12888","DOIUrl":"10.1111/tra.12888","url":null,"abstract":"<p><p>A key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins (LDL) in lysosomes. This event culminates in the loss of cell homeostasis, inflammation, and cell death. Nevertheless, the exact chemical etiology of atherogenesis and the molecular and cellular mechanisms responsible for the impairment of lysosome function in plaque macrophages are still unknown. Here, we demonstrate that macrophages exposed to cholesteryl hemiazelate (ChA), one of the most prevalent products of LDL-derived cholesteryl ester oxidation, exhibit enlarged peripheral dysfunctional lysosomes full of undigested ChA and neutral lipids. Both lysosome area and accumulation of neutral lipids are partially irreversible. Interestingly, the dysfunctional peripheral lysosomes are more prone to fuse with the plasma membrane, secreting their undigested luminal content into the extracellular milieu with potential consequences for the pathology. We further demonstrate that this phenotype is mechanistically linked to the nuclear translocation of the MiT/TFE family of transcription factors. The induction of lysosome biogenesis by ChA appears to partially protect macrophages from lipid-induced cytotoxicity. In sum, our data show that ChA is involved in the etiology of lysosome dysfunction and promotes the exocytosis of these organelles. This latter event is a new mechanism that may be important in the pathogenesis of atherosclerosis.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 7","pages":"284-307"},"PeriodicalIF":4.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9978553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Syntaxin 3 SPI-2 dependent crosstalk facilitates the division of Salmonella containing vacuole.","authors":"Ritika Chatterjee, Abhilash Vijay Nair, Anmol Singh, Nishi Mehta, Subba Rao Gangi Setty, Dipshikha Chakravortty","doi":"10.1111/tra.12887","DOIUrl":"10.1111/tra.12887","url":null,"abstract":"<p><p>Intracellular membrane fusion is mediated by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). SNARE proteins are one of the key players in vesicular transport. Several reports shed light on intracellular bacteria modulating host SNARE machinery to establish infection successfully. The critical SNAREs in macrophages responsible for phagosome maturation are Syntaxin 3 (STX3) and Syntaxin 4 (STX4). Reports also suggest that Salmonella actively modulates its vacuole membrane composition to escape lysosomal fusion. Salmonella containing vacuole (SCV) harbours recycling endosomal SNARE Syntaxin 12 (STX12). However, the role of host SNAREs in SCV biogenesis and pathogenesis remains unclear. Upon knockdown of STX3, we observed a reduction in bacterial proliferation, which is concomitantly restored upon the overexpression of STX3. Live-cell imaging of Salmonella-infected cells showed that STX3 localises to the SCV membranes and thus might help in the fusion of SCV with intracellular vesicles to acquire membrane for its division. We also found the interaction STX3-SCV was abrogated when we infected with SPI-2 encoded Type 3 secretion system (T3SS) apparatus mutant (STM ∆ssaV) but not with SPI-1 encoded T3SS apparatus mutant (STM ∆invC). These observations were also consistent in the mice model of Salmonella infection. Together, these results shed light on the effector molecules secreted through T3SS encoded by SPI-2, possibly involved in interaction with host SNARE STX3, which is essential to maintain the division of Salmonella in SCV and help to maintain a single bacterium per vacuole.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 7","pages":"270-283"},"PeriodicalIF":4.5,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9664687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TrafficPub Date : 2023-06-01Epub Date: 2023-04-23DOI: 10.1111/tra.12885
Boris Simonetti, James L Daly, Peter J Cullen
{"title":"Out of the ESCPE room: Emerging roles of endosomal SNX-BARs in receptor transport and host-pathogen interaction.","authors":"Boris Simonetti, James L Daly, Peter J Cullen","doi":"10.1111/tra.12885","DOIUrl":"10.1111/tra.12885","url":null,"abstract":"<p><p>Several functions of the human cell, such as sensing nutrients, cell movement and interaction with the surrounding environment, depend on a myriad of transmembrane proteins and their associated proteins and lipids (collectively termed \"cargoes\"). To successfully perform their tasks, cargo must be sorted and delivered to the right place, at the right time, and in the right amount. To achieve this, eukaryotic cells have evolved a highly organized sorting platform, the endosomal network. Here, a variety of specialized multiprotein complexes sort cargo into itineraries leading to either their degradation or their recycling to various organelles for further rounds of reuse. A key sorting complex is the Endosomal SNX-BAR Sorting Complex for Promoting Exit (ESCPE-1) that promotes the recycling of an array of cargos to the plasma membrane and/or the trans-Golgi network. ESCPE-1 recognizes a hydrophobic-based sorting motif in numerous cargoes and orchestrates their packaging into tubular carriers that pinch off from the endosome and travel to the target organelle. A wide range of pathogens mimic this sorting motif to hijack ESCPE-1 transport to promote their invasion and survival within infected cells. In other instances, ESCPE-1 exerts restrictive functions against pathogens by limiting their replication and infection. In this review, we discuss ESCPE-1 assembly and functions, with a particular focus on recent advances in the understanding of its role in membrane trafficking, cellular homeostasis and host-pathogen interaction.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 6","pages":"234-250"},"PeriodicalIF":4.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10768393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9685389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TrafficPub Date : 2023-05-01Epub Date: 2023-03-30DOI: 10.1111/tra.12884
Vojtěch Dostál, Tereza Humhalová, Pavla Beránková, Ondřej Pácalt, Lenka Libusová
{"title":"SWIP mediates retromer-independent membrane recruitment of the WASH complex.","authors":"Vojtěch Dostál, Tereza Humhalová, Pavla Beránková, Ondřej Pácalt, Lenka Libusová","doi":"10.1111/tra.12884","DOIUrl":"10.1111/tra.12884","url":null,"abstract":"<p><p>The pentameric WASH complex facilitates endosomal protein sorting by activating Arp2/3, which in turn leads to the formation of F-actin patches specifically on the endosomal surface. It is generally accepted that WASH complex attaches to the endosomal membrane via the interaction of its subunit FAM21 with the retromer subunit VPS35. However, we observe the WASH complex and F-actin present on endosomes even in the absence of VPS35. We show that the WASH complex binds to the endosomal surface in both a retromer-dependent and a retromer-independent manner. The retromer-independent membrane anchor is directly mediated by the subunit SWIP. Furthermore, SWIP can interact with a number of phosphoinositide species. Of those, our data suggest that the interaction with phosphatidylinositol-3,5-bisphosphate (PI(3,5)P<sub>2</sub> ) is crucial to the endosomal binding of SWIP. Overall, this study reveals a new role of the WASH complex subunit SWIP and highlights the WASH complex as an independent, self-sufficient trafficking regulator.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 5","pages":"216-230"},"PeriodicalIF":4.5,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9691748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TrafficPub Date : 2023-04-01DOI: 10.1111/tra.12881
Andreas Koller, Susanne Maria Brunner, Julia Preishuber-Pflügl, Christian Runge, Anja-Maria Ladek, Herbert Anton Reitsamer, Andrea Trost
{"title":"Cysteinyl leukotriene receptor 1 is a potent regulator of the endosomal-lysosomal system in the ARPE-19 retinal pigment epithelial cell line.","authors":"Andreas Koller, Susanne Maria Brunner, Julia Preishuber-Pflügl, Christian Runge, Anja-Maria Ladek, Herbert Anton Reitsamer, Andrea Trost","doi":"10.1111/tra.12881","DOIUrl":"https://doi.org/10.1111/tra.12881","url":null,"abstract":"<p><p>The endosomal-lysosomal system is central for cell homeostasis and comprises the functions and dynamics of particular organelles including endosomes, lysosomes and autophagosomes. In previous studies, we found that the cysteinyl leukotriene receptor 1 (CysLTR1) regulates autophagy in the retinal pigment epithelial cell line ARPE-19 under basal cellular conditions. However, the underlying mechanism by which CysLTR1 regulates autophagy is unknown. Thus, in the present study, the effects of CysLTR1 inhibition on the endosomal-lysosomal system are analyzed in detail to identify the role of CysLTR1 in cell homeostasis and autophagy regulation. CysLTR1 inhibition in ARPE-19 cells by Zafirlukast, a CysLTR1 antagonist, depleted the lysosomal pool. Furthermore, CysLTR1 antagonization reduced endocytic capacity and internalization of epidermal growth factor and decreased levels of the transferrin receptor, CD71. Serum starvation abolished the effect of Zafirlukast on the autophagic flux, which identifies the endocytic regulation of serum components by CysLTR1 as an important autophagy-modulating mechanism. The role of CysLTR1 in inflammation and cell stress has been exceedingly studied, but its involvement in the endosomal-lysosomal pathway is largely unknown. This current study provides new insights into basal activity of CysLTR1 on cellular endocytosis and the subsequent impact on downstream processes like autophagy.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 4","pages":"177-189"},"PeriodicalIF":4.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9550154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TrafficPub Date : 2023-04-01DOI: 10.1111/tra.12883
Camille Lemaigre, Apolline Ceuppens, Cesar Augusto Valades-Cruz, Benjamin Ledoux, Bastien Vanbeneden, Mujtaba Hassan, Fredrik R Zetterberg, Ulf J Nilsson, Ludger Johannes, Christian Wunder, Henri-François Renard, Pierre Morsomme
{"title":"N-BAR and F-BAR proteins-endophilin-A3 and PSTPIP1-control clathrin-independent endocytosis of L1CAM.","authors":"Camille Lemaigre, Apolline Ceuppens, Cesar Augusto Valades-Cruz, Benjamin Ledoux, Bastien Vanbeneden, Mujtaba Hassan, Fredrik R Zetterberg, Ulf J Nilsson, Ludger Johannes, Christian Wunder, Henri-François Renard, Pierre Morsomme","doi":"10.1111/tra.12883","DOIUrl":"https://doi.org/10.1111/tra.12883","url":null,"abstract":"<p><p>Recent advances in the field demonstrate the high diversity and complexity of endocytic pathways. In the current study, we focus on the endocytosis of L1CAM. This glycoprotein plays a major role in the development of the nervous system, and is involved in cancer development and is associated with metastases and poor prognosis. Two L1CAM isoforms are subject to endocytosis: isoform 1, described as a clathrin-mediated cargo; isoform 2, whose endocytosis has never been studied. Deciphering the molecular machinery of isoform 2 internalisation should contribute to a better understanding of its pathophysiological role. First, we demonstrated in our cellular context that both isoforms of L1CAM are mainly a clathrin-independent cargo, which was not expected for isoform 1. Second, the mechanism of L1CAM endocytosis is specifically mediated by the N-BAR domain protein endophilin-A3. Third, we discovered PSTPIP1, an F-BAR domain protein, as a novel actor in this endocytic process. Finally, we identified galectins as endocytic partners and negative regulators of L1CAM endocytosis. In summary, the interplay of the BAR proteins endophilin-A3 and PSTPIP1, and galectins fine tune the clathrin-independent endocytosis of L1CAM.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 4","pages":"190-212"},"PeriodicalIF":4.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9196613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TrafficPub Date : 2023-04-01DOI: 10.1111/tra.12880
Cristiana Lungu, Florian Meyer, Marcel Hörning, Jasmin Steudle, Anja Braun, Bettina Noll, David Benz, Felix Fränkle, Simone Schmid, Stephan A Eisler, Monilola A Olayioye
{"title":"Golgi screen identifies the RhoGEF Solo as a novel regulator of RhoB and endocytic transport.","authors":"Cristiana Lungu, Florian Meyer, Marcel Hörning, Jasmin Steudle, Anja Braun, Bettina Noll, David Benz, Felix Fränkle, Simone Schmid, Stephan A Eisler, Monilola A Olayioye","doi":"10.1111/tra.12880","DOIUrl":"https://doi.org/10.1111/tra.12880","url":null,"abstract":"<p><p>The control of intracellular membrane trafficking by Rho GTPases is central to cellular homeostasis. How specific guanine nucleotide exchange factors and GTPase-activating proteins locally balance GTPase activation in this process is nevertheless largely unclear. By performing a microscopy-based RNAi screen, we here identify the RhoGEF protein Solo as a functional counterplayer of DLC3, a RhoGAP protein with established roles in membrane trafficking. Biochemical, imaging and optogenetics assays further uncover Solo as a novel regulator of endosomal RhoB. Remarkably, we find that Solo and DLC3 control not only the activity, but also total protein levels of RhoB in an antagonistic manner. Together, the results of our study uncover the first functionally connected RhoGAP-RhoGEF pair at endomembranes, placing Solo and DLC3 at the core of endocytic trafficking.</p>","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 4","pages":"162-176"},"PeriodicalIF":4.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9201495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TrafficPub Date : 2023-03-01DOI: 10.1111/tra.12841
Jacob A McPhail, John E Burke
{"title":"Molecular mechanisms of PI4K regulation and their involvement in viral replication.","authors":"Jacob A McPhail, John E Burke","doi":"10.1111/tra.12841","DOIUrl":"https://doi.org/10.1111/tra.12841","url":null,"abstract":"Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4‐kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4‐phosphate (PI4P)‐enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein‐binding partners and post‐translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":"24 3","pages":"131-145"},"PeriodicalIF":4.5,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9081024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}