细胞外囊泡在铁稳态和铁下垂中的作用:聚焦于肌肉骨骼疾病。

IF 3.6 3区 生物学 Q3 CELL BIOLOGY
Traffic Pub Date : 2023-09-01 DOI:10.1111/tra.12905
Zhiwei Liao, Bide Tong, Zixuan Ou, Junyu Wei, Ming Lei, Cao Yang
{"title":"细胞外囊泡在铁稳态和铁下垂中的作用:聚焦于肌肉骨骼疾病。","authors":"Zhiwei Liao, Bide Tong, Zixuan Ou, Junyu Wei, Ming Lei, Cao Yang","doi":"10.1111/tra.12905","DOIUrl":null,"url":null,"abstract":"Iron homeostasis is crucial for maintaining proper cellular function, and its disruption is considered one of the pathogenic mechanisms underlying musculoskeletal diseases. Under conditions of oxidative stress, the accumulation of cellular iron overload and lipid peroxidation can lead to ferroptosis. Extracellular vesicles (EVs), serving as mediators in the cell‐to‐cell communication, play an important role in regulating the outcome of cell ferroptosis. Growing evidence has proven that EV biogenesis and secretion are tightly associated with cellular iron export. Furthermore, different sources of EVs deliver diverse cargoes to bring about phenotypic changes in the recipient cells, either activating or inhibiting ferroptosis. Thus, delivering therapies targeting ferroptosis through EVs may hold significant potential for treating musculoskeletal diseases. This review aims to summarize current knowledge on the role of EVs in iron homeostasis and ferroptosis, as well as their therapeutic applications in musculoskeletal diseases, and thereby provide valuable insights for both research and clinical practice.","PeriodicalId":23207,"journal":{"name":"Traffic","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of extracellular vesicles in iron homeostasis and ferroptosis: Focus on musculoskeletal diseases.\",\"authors\":\"Zhiwei Liao, Bide Tong, Zixuan Ou, Junyu Wei, Ming Lei, Cao Yang\",\"doi\":\"10.1111/tra.12905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron homeostasis is crucial for maintaining proper cellular function, and its disruption is considered one of the pathogenic mechanisms underlying musculoskeletal diseases. Under conditions of oxidative stress, the accumulation of cellular iron overload and lipid peroxidation can lead to ferroptosis. Extracellular vesicles (EVs), serving as mediators in the cell‐to‐cell communication, play an important role in regulating the outcome of cell ferroptosis. Growing evidence has proven that EV biogenesis and secretion are tightly associated with cellular iron export. Furthermore, different sources of EVs deliver diverse cargoes to bring about phenotypic changes in the recipient cells, either activating or inhibiting ferroptosis. Thus, delivering therapies targeting ferroptosis through EVs may hold significant potential for treating musculoskeletal diseases. This review aims to summarize current knowledge on the role of EVs in iron homeostasis and ferroptosis, as well as their therapeutic applications in musculoskeletal diseases, and thereby provide valuable insights for both research and clinical practice.\",\"PeriodicalId\":23207,\"journal\":{\"name\":\"Traffic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/tra.12905\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/tra.12905","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铁稳态对维持正常的细胞功能至关重要,其破坏被认为是肌肉骨骼疾病的致病机制之一。在氧化应激条件下,细胞铁超载和脂质过氧化的积累可导致铁下垂。细胞外囊泡(Extracellular vesicles, ev)作为细胞间通讯的介质,在调节细胞铁凋亡的结果中发挥重要作用。越来越多的证据表明,EV的生物发生和分泌与细胞铁输出密切相关。此外,不同来源的ev提供不同的货物,在受体细胞中引起表型变化,激活或抑制铁下垂。因此,通过ev提供针对铁下垂的治疗可能具有治疗肌肉骨骼疾病的巨大潜力。本文旨在综述ev在铁稳态和铁凋亡中的作用,以及它们在肌肉骨骼疾病中的治疗应用,从而为研究和临床实践提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of extracellular vesicles in iron homeostasis and ferroptosis: Focus on musculoskeletal diseases.
Iron homeostasis is crucial for maintaining proper cellular function, and its disruption is considered one of the pathogenic mechanisms underlying musculoskeletal diseases. Under conditions of oxidative stress, the accumulation of cellular iron overload and lipid peroxidation can lead to ferroptosis. Extracellular vesicles (EVs), serving as mediators in the cell‐to‐cell communication, play an important role in regulating the outcome of cell ferroptosis. Growing evidence has proven that EV biogenesis and secretion are tightly associated with cellular iron export. Furthermore, different sources of EVs deliver diverse cargoes to bring about phenotypic changes in the recipient cells, either activating or inhibiting ferroptosis. Thus, delivering therapies targeting ferroptosis through EVs may hold significant potential for treating musculoskeletal diseases. This review aims to summarize current knowledge on the role of EVs in iron homeostasis and ferroptosis, as well as their therapeutic applications in musculoskeletal diseases, and thereby provide valuable insights for both research and clinical practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Traffic
Traffic 生物-细胞生物学
CiteScore
8.10
自引率
2.20%
发文量
50
审稿时长
2 months
期刊介绍: Traffic encourages and facilitates the publication of papers in any field relating to intracellular transport in health and disease. Traffic papers span disciplines such as developmental biology, neuroscience, innate and adaptive immunity, epithelial cell biology, intracellular pathogens and host-pathogen interactions, among others using any eukaryotic model system. Areas of particular interest include protein, nucleic acid and lipid traffic, molecular motors, intracellular pathogens, intracellular proteolysis, nuclear import and export, cytokinesis and the cell cycle, the interface between signaling and trafficking or localization, protein translocation, the cell biology of adaptive an innate immunity, organelle biogenesis, metabolism, cell polarity and organization, and organelle movement. All aspects of the structural, molecular biology, biochemistry, genetics, morphology, intracellular signaling and relationship to hereditary or infectious diseases will be covered. Manuscripts must provide a clear conceptual or mechanistic advance. The editors will reject papers that require major changes, including addition of significant experimental data or other significant revision. Traffic will consider manuscripts of any length, but encourages authors to limit their papers to 16 typeset pages or less.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信