STEM CELLS最新文献

筛选
英文 中文
MSC-Derived Small Extracellular Vesicles Exert Cardioprotective Effect Through Reducing VLCFAs and Apoptosis in Human Cardiac Organoid IRI Model. 间充质干细胞衍生的细胞外小泡通过减少VLCFAs和细胞凋亡在人心脏器质性IRI模型中发挥心脏保护作用
IF 5.2 2区 医学
STEM CELLS Pub Date : 2024-05-15 DOI: 10.1093/stmcls/sxae015
Boon Min Poh, Lee Chuen Liew, Yan Ni Annie Soh, Ruenn Chai Lai, Sai Kiang Lim, Ying Swan Ho, Boon Seng Soh
{"title":"MSC-Derived Small Extracellular Vesicles Exert Cardioprotective Effect Through Reducing VLCFAs and Apoptosis in Human Cardiac Organoid IRI Model.","authors":"Boon Min Poh, Lee Chuen Liew, Yan Ni Annie Soh, Ruenn Chai Lai, Sai Kiang Lim, Ying Swan Ho, Boon Seng Soh","doi":"10.1093/stmcls/sxae015","DOIUrl":"10.1093/stmcls/sxae015","url":null,"abstract":"<p><p>Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting for 31% of all deaths globally. Myocardial ischemia-reperfusion injury (IRI), a common complication of CVDs, is a major cause of mortality and morbidity. Studies have shown efficacious use of mesenchymal stem cells-derived small extracellular vesicles (MSCs-EVs) to mitigate IRI in animals, but few research has been done on human-related models. In this study, human embryonic stem cell-derived chambered cardiac organoid (CCO) was used as a model system to study the effects of MSC-EVs on myocardial IRI. The results revealed that MSC-EVs treatment reduced apoptosis and improved contraction resumption of the CCOs. Metabolomics analysis showed that this effect could be attributed to EVs' ability to prevent the accumulation of unsaturated very long-chain fatty acids (VLCFAs). This was corroborated when inhibition of fatty acid synthase, which was reported to reduce VLCFAs, produced a similar protective effect to EVs. Overall, this study uncovered the mechanistic role of MSC-EVs in mitigating IRI that involves preventing the accumulation of unsaturated VLCFA, decreasing cell death, and improving contraction resumption in CCOs.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"416-429"},"PeriodicalIF":5.2,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human Umbilical Cord Mesenchymal Stromal Cell-Derived Exosomes Alleviate Hypoxia-Induced Pulmonary Arterial Hypertension in Mice Via Macrophages. 人脐带间充质基质细胞衍生的外泌体可通过巨噬细胞缓解缺氧诱发的小鼠肺动脉高压。
IF 5.2 2区 医学
STEM CELLS Pub Date : 2024-04-15 DOI: 10.1093/stmcls/sxad098
Hong Liu, Qingqing Zhang, Chuanchuan Liu, Yuwei Zhang, Yuxiang Wang, Pan Huang, Lan Ma, Rili Ge
{"title":"Human Umbilical Cord Mesenchymal Stromal Cell-Derived Exosomes Alleviate Hypoxia-Induced Pulmonary Arterial Hypertension in Mice Via Macrophages.","authors":"Hong Liu, Qingqing Zhang, Chuanchuan Liu, Yuwei Zhang, Yuxiang Wang, Pan Huang, Lan Ma, Rili Ge","doi":"10.1093/stmcls/sxad098","DOIUrl":"10.1093/stmcls/sxad098","url":null,"abstract":"<p><p>Pulmonary hypertension (PH) is an intractable, severe, and progressive cardiopulmonary disease. Recent findings suggest that human umbilical cord mesenchymal stromal cells (HUCMSCs) and HUCMSC-derived exosomes (HUCMSC-Exos) possess potential therapeutic value for PH. However, whether they have beneficial effects on hypoxic pulmonary hypertension (HPH) is unclear. Exos are released into the extracellular environment by the fusion of intracellular multivesicular bodies with the cell membrane, and they play an important role in cellular communication. Exos ameliorate immune inflammation levels, alter macrophage phenotypes, regulate mitochondrial metabolic function, and inhibit pulmonary vascular remodeling, thereby improving PH. Macrophages are important sources of cytokines and other transmitters and can promote the release of cytokines, vasoactive molecules, and reactive oxygen species, all of which are associated with pulmonary vascular remodeling. Therefore, the aim of this study was to investigate whether HUCMSC-Exos could improve the lung inflammatory microenvironment and inhibit pulmonary vascular remodeling by targeting macrophages and identifying the underlying mechanisms. The results showed that HUCMSC-Exos promoted M2 macrophage polarization, decreased pro-inflammatory factors, increased IL-10 levels, and inhibited IL-33/ST2 axis expression, thereby inhibiting hypoxia-induced proliferation of pulmonary artery smooth muscle cells and ameliorating HPH.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"329-345"},"PeriodicalIF":5.2,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139058054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fructose Potentiates Bone Loss and Marrow Adipose Tissue Accumulation by Inhibiting Adenosine 5'-Monophosphate-Activated Protein Kinase in Mesenchymal Stem Cells. 果糖通过抑制间充质干细胞中的 5'-Monophosphate-Activated Protein Kinase 促成骨质流失和骨髓脂肪组织的积累
IF 5.2 2区 医学
STEM CELLS Pub Date : 2024-04-15 DOI: 10.1093/stmcls/sxae001
Ziqi Yan, Juan Du, Rui Zhao, Xu Liu, Junji Xu, Lijia Guo, Yi Liu
{"title":"Fructose Potentiates Bone Loss and Marrow Adipose Tissue Accumulation by Inhibiting Adenosine 5'-Monophosphate-Activated Protein Kinase in Mesenchymal Stem Cells.","authors":"Ziqi Yan, Juan Du, Rui Zhao, Xu Liu, Junji Xu, Lijia Guo, Yi Liu","doi":"10.1093/stmcls/sxae001","DOIUrl":"10.1093/stmcls/sxae001","url":null,"abstract":"<p><p>Increased fructose consumption has been elucidated to contribute to metabolic diseases. Bone is a dynamic organ that undergoes constant remodeling. However, the effects of fructose on bone health are still in dispute. Here, we identified fructose deteriorated bone mineral density while promoting the abundance of bone marrow adipose tissue. Fructose remarkably promoted the bone marrow mesenchymal stem cells' (BMMSCs) adipogenic commitment at the expense of osteogenic commitment. Fructose boosted the glycolysis of BMMSCs and inhibited phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), which played a crucial role in bone-fat alteration. Our results suggested that fructose potentiated bone loss and marrow adipose tissue accumulation by suppressing AMPK activation in BMMSCs. Understanding fructose which affected bone metabolism was thus of primary importance in order to establish preventative measures or treatments for this condition.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"374-384"},"PeriodicalIF":5.2,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139568780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TNFAIP3 Derived from Skeletal Stem Cells Alleviated Rat Osteoarthritis by Inhibiting the Necroptosis of Subchondral Osteoblasts. 骨骼干细胞提取的 TNFAIP3 可抑制软骨下成骨细胞的坏死,从而缓解大鼠骨关节炎。
IF 5.2 2区 医学
STEM CELLS Pub Date : 2024-04-15 DOI: 10.1093/stmcls/sxad097
Xiao-Tong Li, Zhi-Ling Li, Pei-Lin Li, Fei-Yan Wang, Xiao-Yu Zhang, Yu-Xing Wang, Zhi-Dong Zhao, Bo-Feng Yin, Rui-Cong Hao, Ning Mao, Wen-Rong Xia, Li Ding, Heng Zhu
{"title":"TNFAIP3 Derived from Skeletal Stem Cells Alleviated Rat Osteoarthritis by Inhibiting the Necroptosis of Subchondral Osteoblasts.","authors":"Xiao-Tong Li, Zhi-Ling Li, Pei-Lin Li, Fei-Yan Wang, Xiao-Yu Zhang, Yu-Xing Wang, Zhi-Dong Zhao, Bo-Feng Yin, Rui-Cong Hao, Ning Mao, Wen-Rong Xia, Li Ding, Heng Zhu","doi":"10.1093/stmcls/sxad097","DOIUrl":"10.1093/stmcls/sxad097","url":null,"abstract":"<p><p>Recent investigations have shown that the necroptosis of tissue cells in joints is important in the development of osteoarthritis (OA). This study aimed to investigate the potential effects of exogenous skeletal stem cells (SSCs) on the necroptosis of subchondral osteoblasts in OA. Human SSCs and subchondral osteoblasts isolated from human tibia plateaus were used for Western blotting, real-time PCR, RNA sequencing, gene editing, and necroptosis detection assays. In addition, the rat anterior cruciate ligament transection OA model was used to evaluate the effects of SSCs on osteoblast necroptosis in vivo. The micro-CT and pathological data showed that intra-articular injections of SSCs significantly improved the microarchitecture of subchondral trabecular bones in OA rats. Additionally, SSCs inhibited the necroptosis of subchondral osteoblasts in OA rats and necroptotic cell models. The results of bulk RNA sequencing of SSCs stimulated or not by tumor necrosis factor α suggested a correlation of SSCs-derived tumor necrosis factor α-induced protein 3 (TNFAIP3) and cell necroptosis. Furthermore, TNFAIP3-derived from SSCs contributed to the inhibition of the subchondral osteoblast necroptosis in vivo and in vitro. Moreover, the intra-articular injections of TNFAIP3-overexpressing SSCs further improved the subchondral trabecular bone remodeling of OA rats. Thus, we report that TNFAIP3 from SSCs contributed to the suppression of the subchondral osteoblast necroptosis, which suggests that necroptotic subchondral osteoblasts in joints may be possible targets to treat OA by stem cell therapy.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"360-373"},"PeriodicalIF":5.2,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139047856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human Umbilical Cord Mesenchymal Stem Cells Improve Lung Function in Chronic Obstructive Pulmonary Disease Rat Model Through Regulating Lung Microbiota. 人脐带间充质干细胞通过调节肺微生物群改善慢性阻塞性肺病大鼠模型的肺功能
IF 5.2 2区 医学
STEM CELLS Pub Date : 2024-04-15 DOI: 10.1093/stmcls/sxae007
Xiao Zhang, Ting Hu, Xinjuan Yu, Tianying Wang, Lei Jiang, Lixin Sun, Wei Han
{"title":"Human Umbilical Cord Mesenchymal Stem Cells Improve Lung Function in Chronic Obstructive Pulmonary Disease Rat Model Through Regulating Lung Microbiota.","authors":"Xiao Zhang, Ting Hu, Xinjuan Yu, Tianying Wang, Lei Jiang, Lixin Sun, Wei Han","doi":"10.1093/stmcls/sxae007","DOIUrl":"10.1093/stmcls/sxae007","url":null,"abstract":"<p><strong>Background: </strong>The use of human umbilical cord mesenchymal stem cells (UC-MSCs) has shown promise in improving the pathophysiological characteristics of rats with chronic obstructive pulmonary disease (COPD). However, more research is needed to understand the exact mechanism behind their therapeutic effects and their impact on lung microbiota.</p><p><strong>Methods: </strong>To investigate this, rats were randomly assigned to one of 3 groups: Control, COPD + vehicle, and COPD + UC-MSCs group. Lung function changes after UC-MSCs therapy were evaluated weekly for 6 weeks. Additionally, lactate dehydrogenase (LDH), TNF (tumor necrosis factor)-α, IL (interleukin)-6, and IL-1β level in bronchoalveolar lavage fluid (BALF) were analyzed. Arterial blood gas and weight were recorded. Hematoxylin and eosin (HE) staining was used to examine lung pathology, while changes in the lung microbiota were evaluated through 16S rRNA sequencing.</p><p><strong>Results: </strong>The administration of UC-MSCs in rats led to a progressive amelioration of COPD, as demonstrated by enhanced lung function and reduced inflammatory response. UC-MSCs treatment significantly altered the structure and diversity of the lung microbiota, effectively preventing microbiota dysbiosis. This was achieved by increasing the abundance of Bacteroidetes and reducing the levels of Proteobacteria. Additionally, treatment with UC-MSCs reduced the activation of pathways associated with COPD, including microbial metabolism, ABC transporters, and Quorum sensing. The group of UC-MSCs showed increased metabolic pathways, such as amino acid biosynthesis, purine metabolism, starch and sucrose metabolism, and biosynthesis of secondary metabolites, compared to the COPD group.</p><p><strong>Conclusions: </strong>The use of UC-MSCs was found to reduce inflammation and improve lung function in rats with COPD. The mechanism may be related to the lung microbiota, as UC-MSCs improved the communities of lung microbiota and regulated dysregulated metabolic pathways.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"346-359"},"PeriodicalIF":5.2,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139568792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rare, Tightly-Bound, Multi-Cellular Clusters in the Pancreatic Ducts of Adult Mice Function Like Progenitor Cells and Survive and Proliferate After Acinar Cell Injury. 成年小鼠胰腺导管中罕见的、紧密结合的多细胞集群具有类似祖细胞的功能,并能在尖状细胞损伤后存活和增殖。
IF 4 2区 医学
STEM CELLS Pub Date : 2024-04-15 DOI: 10.1093/stmcls/sxae005
Jacob R Tremblay, Jose A Ortiz, Janine C Quijano, Heather N Zook, Neslihan Erdem, Jeanne M LeBon, Wendong Li, Kevin Jou, Walter Tsark, Jeffrey R Mann, Mark T Kozlowski, David A Tirrell, Farzad Esni, Dannielle D Engle, Arthur D Riggs, Hsun Teresa Ku
{"title":"Rare, Tightly-Bound, Multi-Cellular Clusters in the Pancreatic Ducts of Adult Mice Function Like Progenitor Cells and Survive and Proliferate After Acinar Cell Injury.","authors":"Jacob R Tremblay, Jose A Ortiz, Janine C Quijano, Heather N Zook, Neslihan Erdem, Jeanne M LeBon, Wendong Li, Kevin Jou, Walter Tsark, Jeffrey R Mann, Mark T Kozlowski, David A Tirrell, Farzad Esni, Dannielle D Engle, Arthur D Riggs, Hsun Teresa Ku","doi":"10.1093/stmcls/sxae005","DOIUrl":"10.1093/stmcls/sxae005","url":null,"abstract":"<p><p>Pancreatic ductal progenitor cells have been proposed to contribute to adult tissue maintenance and regeneration after injury, but the identity of such ductal cells remains elusive. Here, from adult mice, we identify a near homogenous population of ductal progenitor-like clusters, with an average of 8 cells per cluster. They are a rare subpopulation, about 0.1% of the total pancreatic cells, and can be sorted using a fluorescence-activated cell sorter with the CD133highCD71lowFSCmid-high phenotype. They exhibit properties in self-renewal and tri-lineage differentiation (including endocrine-like cells) in a unique 3-dimensional colony assay system. An in vitro lineage tracing experiment, using a novel HprtDsRed/+ mouse model, demonstrates that a single cell from a cluster clonally gives rise to a colony. Droplet RNAseq analysis demonstrates that these ductal clusters express embryonic multipotent progenitor cell markers Sox9, Pdx1, and Nkx6-1, and genes involved in actin cytoskeleton regulation, inflammation responses, organ development, and cancer. Surprisingly, these ductal clusters resist prolonged trypsin digestion in vitro, preferentially survive in vivo after a severe acinar cell injury and become proliferative within 14 days post-injury. Thus, the ductal clusters are the fundamental units of progenitor-like cells in the adult murine pancreas with implications in diabetes treatment and tumorigenicity.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"385-401"},"PeriodicalIF":4.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139415881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Reprogramming of Hepatocytes Into JAK/Stat-Dependent LGR5+ Liver Cells Able to Initiate Intrahepatic Cholangiocarcinoma. 直接将肝细胞重编程为 JAK/Stat 依赖性 LGR5+肝细胞,从而引发肝内胆管癌。
IF 5.2 2区 医学
STEM CELLS Pub Date : 2024-04-15 DOI: 10.1093/stmcls/sxae006
Diana Chaker, Christophe Desterke, Nicolas Moniaux, Mohamed-Amine Bani, Noufissa Oudrhiri, Jamila Faivre, Ali G Turhan, Annelise Bennaceur-Griscelli, Frank Griscelli
{"title":"Direct Reprogramming of Hepatocytes Into JAK/Stat-Dependent LGR5+ Liver Cells Able to Initiate Intrahepatic Cholangiocarcinoma.","authors":"Diana Chaker, Christophe Desterke, Nicolas Moniaux, Mohamed-Amine Bani, Noufissa Oudrhiri, Jamila Faivre, Ali G Turhan, Annelise Bennaceur-Griscelli, Frank Griscelli","doi":"10.1093/stmcls/sxae006","DOIUrl":"10.1093/stmcls/sxae006","url":null,"abstract":"<p><p>Somatic cells that have been partially reprogrammed by the factors Oct4, Sox2, Klf4, and cMyc (OSKM) have been demonstrated to be potentially tumorigenic in vitro and in vivo due to the acquisition of cancer-associated genomic alterations and the absence of OSKM clearance over time. In the present study, we obtained partially reprogrammed, SSEA1-negative cells by transducing murine hepatocytes with Δ1Δ3-deleted adenoviruses that expressed the 4 OSKM factors. We observed that, under long-term 2D and 3D culture conditions, hepatocytes could be converted into LGR5-positive cells with self-renewal capacity that was dependent on 3 cross-signaling pathways: IL6/Jak/Stat3, LGR5/R-spondin, and Wnt/β-catenin. Following engraftment in syngeneic mice, LGR5-positive cells that expressed the cancer markers CD51, CD166, and CD73 were capable of forming invasive and metastatic tumors reminiscent of intrahepatic cholangiocarcinoma (ICC): they were positive for CK19 and CK7, featured associations of cord-like structures, and contained cuboidal and atypical cells with dissimilar degrees of pleomorphism and mitosis. The LGR5+-derived tumors exhibited a highly vascularized stroma with substantial fibrosis. In addition, we identified pro-angiogenic factors and signaling pathways involved in neo-angiogenesis and vascular development, which represent potential new targets for anti-angiogenic strategies to overcome tumor resistance to current ICC treatments.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"301-316"},"PeriodicalIF":5.2,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139540968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ubiquitin E3 Ligase FBXO9 Regulates Pluripotency by Targeting DPPA5 for Ubiquitylation and Degradation. 泛素E3连接酶FBXO9通过靶向DPPA5进行泛素化和降解来调节多能性。
IF 5.2 2区 医学
STEM CELLS Pub Date : 2024-04-15 DOI: 10.1093/stmcls/sxae004
Samantha A Swenson, Kasidy K Dobish, Hendrik C Peters, C Bea Winship, R Willow Hynes-Smith, Mika Caplan, Karli J Wittorf, Gargi Ghosal, Shannon M Buckley
{"title":"Ubiquitin E3 Ligase FBXO9 Regulates Pluripotency by Targeting DPPA5 for Ubiquitylation and Degradation.","authors":"Samantha A Swenson, Kasidy K Dobish, Hendrik C Peters, C Bea Winship, R Willow Hynes-Smith, Mika Caplan, Karli J Wittorf, Gargi Ghosal, Shannon M Buckley","doi":"10.1093/stmcls/sxae004","DOIUrl":"10.1093/stmcls/sxae004","url":null,"abstract":"<p><p>Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have unique characteristics where they can both contribute to all three germ layers in vivo and self-renewal indefinitely in vitro. Post-translational modifications of proteins, particularly by the ubiquitin proteasome system (UPS), control cell pluripotency, self-renewal, and differentiation. A significant number of UPS members (mainly ubiquitin ligases) regulate pluripotency and influence ESC differentiation with key elements of the ESC pluripotency network (including the \"master\" regulators NANOG and OCT4) being controlled by ubiquitination. To further understand the role of the UPS in pluripotency, we performed an RNAi screen during induction of cellular reprogramming and have identified FBXO9 as a novel regulator of pluripotency associated protein DPPA5. Our findings indicate that FBXO9 silencing facilitates the induction of pluripotency through decreased proteasomal degradation of DPPA5. These findings identify FBXO9 as a key regulator of pluripotency.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"317-328"},"PeriodicalIF":5.2,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Placenta-Derived Decidua Stromal Cells: A New Frontier in the Therapy of Acute Graft-Versus-Host Disease. 胎盘衍生的蜕膜基质细胞--治疗急性移植物抗宿主病的新领域。
IF 5.2 2区 医学
STEM CELLS Pub Date : 2024-04-15 DOI: 10.1093/stmcls/sxae003
Olle Ringdén, Behnam Sadeghi
{"title":"Placenta-Derived Decidua Stromal Cells: A New Frontier in the Therapy of Acute Graft-Versus-Host Disease.","authors":"Olle Ringdén, Behnam Sadeghi","doi":"10.1093/stmcls/sxae003","DOIUrl":"10.1093/stmcls/sxae003","url":null,"abstract":"<p><p>Acute graft-versus-host disease (GVHD) is a frequent and potentially life-threatening complication following allogeneic hematopoietic cell transplantation (HCT). Mesenchymal stromal cells (MSCs), rare precursors found in all body tissues, possess immunosuppressive properties and can inhibit alloreactivity both in vitro and in vivo. Two decades ago, we introduced bone marrow-derived (BM) MSCs as a novel therapy for acute GVHD. While some patients responded to BM-MSCs, the response was not universal. Commercially available BM-MSCs are now used for acute GVHD treatment in Canada, Japan, and New Zealand. The fetus is protected from the mother's immune system by the placenta, and our research found that placenta-derived decidua stromal cells (DSCs) offer a stronger immunosuppressive effect than other sources of stromal cells. Safety studies in rabbits, rats, mice, and humans have shown negligible or no side effects from BM-MSCs or DSCs. In a phase I/II trial for severe acute GVHD, we treated 21 patients (median age, 49 years; range 1.6-72 years) with severe biopsy-proven gastrointestinal acute GVHD. The median cell dose of DSCs was 1.2 × 106 (range 0.9-2.9) cells/kg body weight, with a median of 2 (range 1-6) infusions given 1 week apart. The cell viability of DSCs was 93% (range, 69%-100%), and the median cell passage number was 4 (range, 2-4). All patients responded, with a complete response of acute GVHD in 11 patients and partial response in 10 and 1-year survival of 81%. Randomized trials are needed to prove the superiority of DSCs compared to ruxolitinib and/or other novel immunosuppressive therapies.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"291-300"},"PeriodicalIF":5.2,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139415880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human iPSC-Based Model of COPD to Investigate Disease Mechanisms, Predict SARS-COV-2 Outcome, and Test Preventive Immunotherapy. 基于人类 iPSC 的慢性阻塞性肺病模型,用于研究疾病机制、预测 SARS-COV-2 的结果和测试预防性免疫疗法。
IF 5.2 2区 医学
STEM CELLS Pub Date : 2024-03-14 DOI: 10.1093/stmcls/sxad094
Rania Dagher, Aigul Moldobaeva, Elise Gubbins, Sydney Clark, Mia Madel Alfajaro, Craig B Wilen, Finn Hawkins, Xiaotao Qu, Chia Chien Chiang, Yang Li, Lori Clarke, Yasuhiro Ikeda, Charles Brown, Roland Kolbeck, Qin Ma, Mauricio Rojas, Jonathan L Koff, Mahboobe Ghaedi
{"title":"Human iPSC-Based Model of COPD to Investigate Disease Mechanisms, Predict SARS-COV-2 Outcome, and Test Preventive Immunotherapy.","authors":"Rania Dagher, Aigul Moldobaeva, Elise Gubbins, Sydney Clark, Mia Madel Alfajaro, Craig B Wilen, Finn Hawkins, Xiaotao Qu, Chia Chien Chiang, Yang Li, Lori Clarke, Yasuhiro Ikeda, Charles Brown, Roland Kolbeck, Qin Ma, Mauricio Rojas, Jonathan L Koff, Mahboobe Ghaedi","doi":"10.1093/stmcls/sxad094","DOIUrl":"10.1093/stmcls/sxad094","url":null,"abstract":"<p><p>Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"230-250"},"PeriodicalIF":5.2,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139105617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信