{"title":"Control of wire melting behavior using coaxial hybrid solid wire : Development of pure Ar-MIG welding","authors":"Terumi Nakamura, K. Hiraoka, Manabu Tanaka","doi":"10.2207/QJJWS.29.35S","DOIUrl":"https://doi.org/10.2207/QJJWS.29.35S","url":null,"abstract":"The wire melting behavior in pure Ar shielding gas can be controlled with a coaxial hybrid solid (CHS) wire which has a coaxial double structure with a different composition in its inner and outer parts. This wire can prevent the generation of a column of liquid metal (CLM) at the wire tip due to the difference in the materials properties of the inner and outer parts and stabilize MIG welding in pure Ar shielding gas (Ar-MIG welding). We examine the effects of the material properties (melting temperature, specific heat and thermal conductivity) on the wire melting behavior, then propose and show the effectiveness of a design guide for the CHS wire by carrying out a simulation and a welding examination on the new CHS wire which was developed based on this design guide.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"14 1","pages":"349-351"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90387796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shinji Suzuki, Y. Oyama, M. Maeda, Yasuo Takahashi
{"title":"Numerical Analysis of Deformation and Thermal Behavior during Ultrasonic Al Ribbon Bonding","authors":"Shinji Suzuki, Y. Oyama, M. Maeda, Yasuo Takahashi","doi":"10.2207/QJJWS.29.138S","DOIUrl":"https://doi.org/10.2207/QJJWS.29.138S","url":null,"abstract":"Ultrasonic bonding process for wiring an Al ribbon to electric pads on substrate is affected by ribbon deformation and thermal behavior, i.e., (temperature rise of the materials during bonding). In the present study, the deformation and thermal behavior are analyzed. Numerical simulations of temperature rise and the deformation of the ribbon (wiring materials) were carried out by finite difference and element methods, respectively. As a result, the temperature rise and deformation processes were visualized by graphic images. It was suggested that the temperature of ribbon rose up to greater than 373 K during bonding. The ribbon deformation and the frictional slip behaviors influenced each other. Ultrasonic vibration enhances the equivalent stress in the Al ribbon very largely.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"1 1","pages":"143-144"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87593832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seigo Tomiyama, H. Serizawa, T. Hajima, H. Murakawa
{"title":"Preliminary numerical research of microstructural fracture behavior in metal by using interface element","authors":"Seigo Tomiyama, H. Serizawa, T. Hajima, H. Murakawa","doi":"10.2207/QJJWS.29.109S","DOIUrl":"https://doi.org/10.2207/QJJWS.29.109S","url":null,"abstract":"In order to demonstrate not only the deformation of grain but also the opening and/or sliding at grain boundary, the interface element was introduced into the ordinary finite element method, and this numerical method was applied for examining the microstructural fracture behavior in two-dimensional ideal microstructure obtained through Voronoi tessellations. As for the grain, the anisotropy in elastic modulus due to the grain orientation was taken into account, while the fracture strength at grain boundary was assumed to be related to the boundary energy which could be determined by the atomic disorder at the boundary. From the serial computational results for examining the influences of elastic properties in grain (isotropy and anisotropy), mechanical property at grain boundary (interaction between opening and sliding deformation), and grain configurations, it was revealed that all the factors varied in this research might affect the microstructural fracture behavior. Also, it can be concluded that this numerical method with the interface element can be useful for demonstrating the microstructural fracture behavior including the deformation at grain boundary.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"40 1","pages":"238-240"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74950000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical analysis on effects of power source characteristics on arc properties in gas tungsten arc","authors":"Y. Tsujimura, S. Tashiro, Manabu Tanaka","doi":"10.2207/QJJWS.29.1S","DOIUrl":"https://doi.org/10.2207/QJJWS.29.1S","url":null,"abstract":"Arc properties in Gas Tungsten Arc (GTA) strongly depend on welding conditions such as an arc current, an arc length and so on. In GTA, the arc current and an arc voltage are determined by an external characteristic of a power source and an electrical characteristic of the arc. There are two kinds of external characteristics of power sources, namely, Constant Current (CC) and Constant Voltage (CV) characteristics. The electrical characteristic of the arc depends on the arc length. In this study, dependences of the arc properties and relationships between the current and the voltage on the arc length in GTA employing power sources with the CC and the CV characteristics were numerically analyzed. As a result, it was found that the voltage and power of the arc decreased with decrease of the arc length in case of the CC characteristic and the current and the power of the arc increase dramatically with decrease of the arc length in case of the CV characteristic. Furthermore, with variation of the arc length, the arc power hardly changes for the CC characteristic, although the arc power largely changes for the CV characteristic.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"102 1","pages":"178-179"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74836377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microstructure and mechanical properties of overlaying specimens in GMAW hybrid an additional longitudinal electromagnetic field","authors":"Ji’an Luo","doi":"10.2207/QJJWS.29.76S","DOIUrl":"https://doi.org/10.2207/QJJWS.29.76S","url":null,"abstract":"In order to meet requirements of hot forge mould in the plastic manufacturing fields, the gas metal arc welding (GMAW) with a longitudinal electromagnetic field (LMF-GMAW) is applied to manufacture the bimetal thermal forming mould and repair the old die. The microstructure and mechanical properties are analyzed by SEM, EDS, micro-hardness, wear-resistance and thermal physical simulation testing methods. Our study shows that the LMF-GMAW method can increase the wear resistance property of the surfacing layer, enhance the interface bonding ability and improve the thermal mechanical strength of bimetal overlay work pieces.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"46 1","pages":"97-99"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74511308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Sawato, S. Tashiro, K. Nakata, Manabu Tanaka, E. Yamamoto, K. Yamazaki, Keiichi Suzuki
{"title":"Measurement of dynamical variation in two-dimensional temperature distribution of TIG pulsed-arcs","authors":"H. Sawato, S. Tashiro, K. Nakata, Manabu Tanaka, E. Yamamoto, K. Yamazaki, Keiichi Suzuki","doi":"10.2207/QJJWS.29.23S","DOIUrl":"https://doi.org/10.2207/QJJWS.29.23S","url":null,"abstract":"TIG pulsed-arc welding is suitable for back-bead welding, thin plate welding and so on, because the heat source properties can be controlled by current waveform. The heat flux onto the base metal is affected mainly by thermal conduction and electron condensation from the arc. Both factors strongly depend on the temperature distribution and current path in the arc. In order to clarify the heat source properties of TIG pulsed-arc, dynamic variation in two-dimensional temperature distribution of TIG pulsed-arc was measured through Fowler-Milne method with a high speed video camera as a first step of the study. As a result, it was found that the arc column was expanded in radial direction and the maximum arc temperature was 20,000K during the peak current of 200A. On the other hand, the width of the arc column decreased especially in the downstream region of the arc and the maximum arc temperature fell to 17,500K during the base current of 50A.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"28 1","pages":"193-194"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90540822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interfacial reaction between Sn-3.0Ag-0.5Cu solder/Co-P plating and Ni-Co-P plating","authors":"T. Daito, H. Nishikawa, T. Takemoto, T. Matsunami","doi":"10.2207/QJJWS.29.142S","DOIUrl":"https://doi.org/10.2207/QJJWS.29.142S","url":null,"abstract":"In response to health and safety concerns, lead-free soldering has become a popular technology in electronics packaging. Compared with the lead-containing solders, Sn- 3.0mass%Ag-0.5mass%Cu (SAC, all mass% unless specified otherwise) solder widely used in Japan has a relatively low impact reliability owing to the solder alloy hardness that induces a high stress concentration at the interface. In general, there is a correlation between the impact reliability and the morphology and thickness of the reaction layer formed at the solder/under bump metallurgy (UBM) interface. The most common UBM is electroless Ni-P plating over copper pad. Electroless Ni-P acts as a diffusion barrier layer between the copper and the solder. However, due to nickel diffusion, P-rich layers form at the interface between the solder and electroless Ni-P. Solder joint failure is related to the growth of these layers and to their brittleness and affects the mechanical reliability of joints. Recently, a new composition of UBM is proposed as diffusion barrier 1-4) . For instance, Magagnin et al. reported that electroless Co-P strongly limits interdiffusion and intermetallic compounds formation as compared with the electroless Ni-P with Sn-Ag-Cu alloy. Furthermore, in the Co-P samples, P-rich layers did not form at the interface 4) . It is important to investigate the relationship between morphology of reaction layer and UBM. This study aims to clarify the effect of Co-P and Ni-Co-P on the morphology of reaction layer formed at the solder/UBM interface. 2. Experimental SAC solder (0.3 g) was used in this study. Electroless Co-P(Au) (3.1 Pm) and electroless Ni-Co-P(Au) (5.2 Pm) finished Cu plates on FR-4 PCBs (25.0×25.0×1.6 mm) were prepared as UBM. Electroless Ni-P(Au) (5.0 Pm) substrate was also used as a reference substrate. These substrates were plated with gold to avoid oxidation of the cobalt and nickel surface. The experimental procedure is shown in Fig. 1 .T he substrate was immersed in 4% HCl solution for 120 s and then rinsed with deionized water. Then, solder was put on the center of the substrate and activated flux (0.01 ml) was dropped on the solder. The test specimen was put into a radiation furnace in a nitrogen atmosphere and heated according to the temperature rise profile shown in Fig. 2. The reflow peak temperature was 513 K with the sample above 490 K for 115 s. After soldering, the spreading area of the solder on the UBM was measured by using the optical microscope (OM).�Three tests were conducted to obtainan average value for each specimen. Then, specimens were cut and the cross-section of the specimens was polished to observe the interface between the solder and UBM. The reaction layer at the interface was observed by scanning electron microscope (SEM).","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"31 1","pages":"224-225"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81523166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Micro Welding of Thin Stainless Steel Foil with a Direct Diode Laser","authors":"N. Abe, Y. Funada, T. Imanaka, M. Tsukamoto","doi":"10.2351/1.5060105","DOIUrl":"https://doi.org/10.2351/1.5060105","url":null,"abstract":"Recently, industrial product parts and components are being made smaller to reduce energy consumption and save space, creating a growing need for the micro-welding of thin foil less than 100μm thick. For this purpose, laser processing is expected to be the method of choice because it allows more precise heat control compared with arc and plasma processing. In this report, the practicability of welding thin stainless steel foil with a direct diode laser system was investigated. The elliptically shaped laser beam of the direct diode laser enabled successful butt-welding of thin stainless steel foil 100μm and less in thickness. At a output power of 100W, 100μm and 50μm thick foils could be welded at a high speed of 6.0m/min and 18.0m/min, respectively. They had narrow bead widths of 100μm which was narrower than the beam size of the laser. No spatter or plasma plume was observed when welding without an assist gas. The tensile strength of the weld bead was nearly the same as that of the base material.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"85 1","pages":"19-23"},"PeriodicalIF":0.0,"publicationDate":"2005-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89736682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Abe, Y. Kunugita, M. Hayashi, Yoshiaki Tsuchitani
{"title":"Dynamic Observation of High Speed Laser-Arc Combination Welding of Thick Steel Plates(Physics, Processes, Instruments & Measurements)","authors":"N. Abe, Y. Kunugita, M. Hayashi, Yoshiaki Tsuchitani","doi":"10.2351/1.5059717","DOIUrl":"https://doi.org/10.2351/1.5059717","url":null,"abstract":"Leading Path Laser-Arc Combination (LPLAC) welding, which consists of laser-arc combination welding with a leading path for the laser beam, enables much deeper penetration than conventional laser-arc combination welding. It also enables higher speed and more stable welding compared with the conventional arc welding with a narrow V groove. To elucidate the reasons for this greater effectiveness, the behavior of the laser plasma, arc plasma, and the molten metal were observed during LPLAC welding using a high-speed video camera operating at 500 frames per second. It was found that the laser plasma stabilized the arc at an optimal distance between the laser and the arc, accounting for the very high speed and deep penetration of this method.Leading Path Laser-Arc Combination (LPLAC) welding, which consists of laser-arc combination welding with a leading path for the laser beam, enables much deeper penetration than conventional laser-arc combination welding. It also enables higher speed and more stable welding compared with the conventional arc welding with a narrow V groove. To elucidate the reasons for this greater effectiveness, the behavior of the laser plasma, arc plasma, and the molten metal were observed during LPLAC welding using a high-speed video camera operating at 500 frames per second. It was found that the laser plasma stabilized the arc at an optimal distance between the laser and the arc, accounting for the very high speed and deep penetration of this method.","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"42 1","pages":"7-11"},"PeriodicalIF":0.0,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79377227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"THREE-DIMENSIONAL SIMULATION OF MELTING AND EVAPORATION DYNAMICS BY THE UNIFIED SOLVER CIP FOR SOLID, LIQUID AND GAS","authors":"T. Yabe","doi":"10.1142/9789812812957_0055","DOIUrl":"https://doi.org/10.1142/9789812812957_0055","url":null,"abstract":"","PeriodicalId":23197,"journal":{"name":"Transactions of JWRI","volume":"13 1","pages":"23-31"},"PeriodicalIF":0.0,"publicationDate":"1996-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73272607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}